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Abstract

This paper presents a numerical solution to shape identification problem of steady-state vis-
cous flow fields. In this study, a shape identification problem is formulated for flow velocity
distribution prescribed problem, while the total dissipated energy is constrained to less than a
desired value, in the viscous flow field. The square error integral between the actual flow veloc-
ity distributions and the prescribed flow velocity distributions in the prescribed sub-domains is
used as the objective functional. Shape gradient of the shape identification problem is derived
theoretically using the Lagrange multiplier method, adjoint variable method, and the formulae
of the material derivative. Reshaping is carried out by the traction method proposed as an ap-
proach to solving shape optimization problems. The validity of proposed method is confirmed
by results of 2D numerical analysis.
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Introduction

Shape optimization problems of viscous flow fields for improving performance are important
in mechanical engineering fields. The theory of shape optimization for incompressible viscous
flow fields was initiated by Pironneau [Pironneau(1973; 1974; 1984)], who formulated a shape
optimization problem for an isolated body located in a uniform viscous flow field to minimize the
drag power on this body. The distributed shape sensitivity, which is called the shape gradient,
was derived with respect to the domain variation by means of an adjoint variable method
based on optimal control theory. The adjoint variable method introduces adjoint variables into
variational forms of the governing equations as variational variables; it also determines the
adjoint variables using adjoint equations derived from criteria defining an optimality condition
with respect to the domain variation.

The present authors have proposed an approach for the shape optimization of such channels or
bodies based on a gradient method using the distributed shape sensitivity. In previous studies,
the present authors presented a numerical method for the minimization of the dissipation energy
of steady-state viscous flow fields [Katamine and Azegami(1995); Katamine et al.(2005)] and
extended this method to 3D problems [Katamine et al.(2009)]. Also, the present authors applied
this method to the shape optimization solution for the drag minimization and lift maximization
of an isolated body located in a uniform viscous flow field [Katamine and Matsui(2012)].

The present study describes the extension of this method for solving a shape identification
problem of flow velocity distribution prescribed problem in sub-domains of steady-state vis-
cous flow fields. Reshaping is accomplished using the traction method [Azegami el al.(1995;
1997); Azegami(2000)], which was proposed as a means of solving boundary shape optimization
problems of domains. In the traction method, domain variations that minimize the objective



functional are obtained as solutions of pseudo-linear elastic problems for continua defined in
the design domain. These continua are loaded with pseudo-distributed traction in proportion
to the shape gradient in the design domain.

In this study, the shape identification problem is formulated for flow velocity distribution pre-
scribed problem, while the total dissipated energy is constrained to less than a desired value,
in the viscous flow field. The square error integral between the actual flow velocity distribu-
tions and the prescribed flow velocity distributions in the prescribed sub-domains is used as
the objective functional. Shape gradient of the shape identification problem is derived theoret-
ically using the Lagrange multiplier method, adjoint variable method, and the formulae of the
material derivative. The validity of proposed method is confirmed by results of 2D numerical
analysis.

Flow velocity distribution prescribed problem

Let Ω be a viscous flow fields in a steady state. The fluid flows in from sub-boundaries Γ0

and flows out from sub-boundaries Γ1, where we write velocity vector u = {ui}n
i=1 and pressure

p. A domain variation problem where the flow velocity distribution u is specified with uD in
sub-domains ΩD ⊂ Ω can be regarded as a shape optimization problem. For simplicity, we
assume that the sub-domains ΩD, sub-boundaries Γ0 and Γ1 are invariables. The flow velocity
distribution prescribed problem considering constraint for dissipation energy is formulated as

Given Ω (1)

find Ωs (2)

that minimizes E(u − uD, u − uD) (3)

subject to aV (u,w) + b(u, u, w) + c(w, p) = l(w) ∀w ∈ W (4)

c(u, q) = 0 ∀q ∈ Q (5)

aV (u, u) ≤ aV
M (6)

where Eqs.(4) and (5) are variational forms, or weak forms, using adjoint velocity w = {wi}n
i=1

and adjoint pressure q a for the state equations. Eq.(6) is the constraint with respect to the
dissipation energy, and aV

M is the limit of dissipation energy. The flow velocity square error
integral E(u − uD, u − uD) and the terms such as the aV (u,w) are defined as

E(u − uD, u − uD) =
∫
ΩD

(ui − uDi) · (ui − uDi) dx,

aV (u,w) =
2

Re

∫
Ω

εij(u)εij(w) dx =
1

Re

∫
Ω

wi,j(ui,j + uj,i) dx,

b(v, u, w) =
∫
Ω

wivjui,j dx, c(w, p) = −
∫
Ω

wi,ip dx, l(w) =
∫
Γ1

wiσ̂i dΓ

where εij(u) = 1
2
(ui,j +uj,i), Reynolds number Re and the traction σ̂i are given as known values

or functions.

Applying the concept of the Lagrange multiplier method and the adjoint variable method, this
problem can be rendered as a stationary problem for the Lagrange functional L(u, p, w, q, Λ):

L = E(u − uD, u − uD)

−aV (u,w) − b(u, u, w) − c(w, p) + l(w) − c(u, q) + Λ(aV (u, u) − aV
M) (7)
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Figure 1: 2D numerical analysis model

Figure 2: Identified shape

where Λ is the Lagrange multiplier with respect to the dissipation energy constraint. The
derivative L̇ with respect to domain variation for shape optimization is calculated. Letting this
L̇ = 0, the Kuhn-Tucker conditions with respect to u, p, w, q, Λ are obtained by

aV (u,w′) + b(u, u, w′) + c(w′, p) = l(w′) ∀w′ ∈ W (8)

c(u, q′) = 0 ∀q′ ∈ Q (9)

aV (u′, w) + b(u′, u, w) + b(u, u′, w) + c(u′, q) = 2E(u − uD, u′) + 2ΛaV (u, u′) ∀u′ ∈ W

(10)

c(w, p′) = 0 ∀p′ ∈ Q (11)

Λ ≥ 0, aV (u, u) ≤ aV
M , Λ(aV (u, u) − aV

M) = 0 (12)

that indicate the variational forms of the original state equations for u and p, the variational
forms of the adjoint equations for w and q which we call adjoint equations, respectively. Where
( · )′ is the shape derivative for domain variation of the distributed function fixed in spatial
coordinates. Under the condition satisfying Eqs.(8)- (12), the derivative L̇ agrees with the
linear form < Gν, V > with respect to the velocity function V of domain variation:

L̇|u,p,w,q,Λ =< Gν, V >=
∫

Γ
GνiVi dΓ, (13)

G = − 1

Re
wi,j(ui,j + uj,i) + Λ

1

Re
ui,j(ui,j + uj,i) (14)

where ν is an outward unit normal vector on the boundary.
The coefficient vector function Gν in Eq.(13) has the meaning of a sensitivity function relative
to domain variation and is so-called the shape gradient function. The scalar function G is called
the shape gradient density function. Since the shape gradient function is obtained, the traction
method[Azegami el al.(1995; 1997); Azegami(2000)] can be applied to this shape identification
problem.

Numerical results

We present the results of a numerical analysis for a 2D shape identification problem using the
traction method and the shape gradient derived as described in the above sections.
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Figure 3: Iterative histories
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Figure 4: Flow velocity distribution on 8 lower-side sub-domaines ΩD

We analyzed the 2D problem as one fundamental problem, as shown in Figure 1 The fluid
flows in from left-side sub-boundary Γ0 and flows out from a right-side and 8 lower-side sub-
boundaries Γ1. The sub-domain ΩD to prescribe the flow velocity distribution was set as 8
lower-side sub-domains. The purpose of this analysis is to determine the shape for which the
flow velocity distribution in the 8 lower-side sub-domains becomes as uniform as possible.

In this numerical analysis of the flow field, we used the Hood-Taylor type finite element. That is,
the complete polynomial series of the second-order terms was used to provide the interpolation
functions for u and w, while the linear polynomial series was used to provide the interpolation
functions for p and q. Further, finite elements with six nodes for u and w and three nodes
for p and q were also used. The total numbers of nodes and elements were 3,902 and 1,803,
respectively. For the analyses of the domain variation V , we used the finite element method
with second-order finite elements. The Reynolds number is 100. The dissipation energy is less
than the initial shape measure.

The numerical results for the shape identification are shown in Figures 2, 3 and 4. Figures 2
shows the obtained identified shape. Figure 3 shows the iterative history ratios of the square
error of velocity distribution E(u − uD, u − uD), the dissipation energy, and the volume nor-
malized by their respective initial values. Figure 4 shows the flow velocity distribution in
the 8 lower-side sub-boundaries Γ1 for the target, the initial shape, and the identified shape.
These results confirm that the flow velocity distribution of the identified shape analyzed by
the proposed method approached the target uniform distribution and that the value for the
objective functional became zero. The validity of the present method was confirmed based on
the numerical results obtained for the basic problems described above.

Conclusions

In the present study, we formulated a shape identification problem in which the square error
integral between the actual flow velocity distributions and the prescribed distributions in the



prescribed sub-domains on viscous flow fields was used as the objective functional. The shape
gradient of the shape identification problem was derived theoretically. The validity of the
proposed method was confirmed based on the results of a 2D numerical analysis. The present
study was supported in part by JSPS KAKENHI Grant Numbers 26420161.
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