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Abstract  A convergence identification method for oscillation numerical simulation is 
proposed, the numerical solutions can converge at the inflection point with respect to the time 
steps. In this way, it is possible to determine which time step is the appropriate convergence 
solutions, it can be ensured to obtain the accurate solution as much as possible, the results of 
the numerical experiments are presented and they confirm analytical predicts. In addition, an 
algorithm to verify the appropriate time step is suggested also, first use one time step to 
compute a case until it reaches a stable periodic solution; then sequentially reducing time step 
to check its convergence. The feasibility of the proposed method is further verified via its 
applications to the case study of the combined natural and MHD convection in a Joule-heated 
cavity using the finite volume methods. It is found that the two approaches have the same 
results and can judge the validity of the time step in computation, this might accurately 
predict the fluid flow and heat transfer.   
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Nomenclature 
A             amplitude  
g gravitational acceleration [m/s2] 
Ha Hartmann number 
L enclosure height [m] 
Pr Prandtl number 
Ra Rayleigh number 
T temperature [K]；period 
u x-velocity component [m/s] 
U dimensionless x-velocity component 
v  y-velocity component [m/s] 
V dimensionless y-velocity component 
W enclosure width [m] 
x x coordinate [m] 
X dimensionless x coordinate 
y y coordinate [m] 
Y dimensionless y coordinate 
 
Greek symbols 
θ dimensionless temperature 
σ electrical conductivity [ms/s] 
τ dimensionless time 
φ potential difference [V] 

 
 
 



 

1. Introduction 
The most common approach for approximating the derivatives is the finite difference 
methods due to their accuracy, stability, and easy of implementation. Different types and 
orders of finite difference methods are available to model the diffusions and the convection 
derivatives, and this method is widely used in the fluid flow and heat transfer field. The 
improvement in computer capabilities, especially in memory and speed, has made an accurate 
numerical predictions of the complex fluid flow and heat transfer cases.  
However in the scientific computing, there are many sources of uncertainty including the 
model inputs, the form of the model, and poorly characterized numerical approximation 
errors [1]. In fact, all of these sources of uncertainty can give false results. 
Therefore, several lines of researches have been proposed in the literature to solve these 
serious problems. One of them is for the scheme and algorithm, for example, a scheme called 
SGSD (Stability Guaranteed Second Order Difference Scheme) is proposed [2] which is 
absolutely stable and possesses at least second-order accuracy. A new weighted essentially 
non-oscillatory (WENO) procedure for solving hyperbolic conservation laws is proposed on 
uniform meshes [3]. An algorithm called IDEAL algorithm was conducted by Sun et al. [4] 
[5] in the IDEAL algorithm where the inner doubly iterative processes for the pressure 
equation are used to almost completely overcome the two approximations in the SIMPLE 
algorithm. Furthermore , a general method to remove the numerical instability of partial 
differential equations was presented by [6].  
The previous studies on the computation of the discretization equation mainly focused on the 
finite difference method, the issue of consistency still remains several problems far from 
totally solved in the actual numerical computation, most transient simulations consist of a 
considerable number of time steps, therefore, the choice of the time step size is critical for the 
efficiency of the transient simulations. An alternative approach is to focus on the numerical 
solution and computer round-off errors. It is well known that Von-Neumann established that 
discretized algebraic equations must be consistent with the differential equations, and must be 
stable in order to obtain a convergent numerical solutions for the given differential equations. 
Eça and Hoekstra [7] offered a procedure for the estimation of the numerical uncertainty of any 
integral or local flow quantity as a result of a fluid flow computation. Teixeira et al. [8] 
explored the time step sensitivity of non-linear atmospheric models and illustrated how 
solutions with small but different time steps will decoupled from each other after a certain 
finite amount of the simulation time. Li [9] carried out systematic investigations on the 
sensitivity of the numerical solutions of non-linear ordinary differential equations (ODEs). A 
review on the computational uncertainty principle could be seen in Li and Wang [10]. Wang 
et al. [11] developed a high-performance parallel Taylor solver to do the Lorenz equations 
computation.  
Depending on the study and analysis of those representative works mentioned above, the 
present paper finds that most of them are concerned to the Lorenz system, namely the 
ordinary differential equations. We know that the governing equations on the fluid flow and 
heat transfer problems are usually partial differential equations (PDEs). It can be proved 
mathematically that linear differential equations should have unique solutions, the situation is 
more complex for non-linear PDE’s, and ,in some cases the numerical solutions are not 
chaotic but are still spurious and time periodic, making it difficult for the researchers to 
determine if the solution is representative of the true physics of the problem or not? Explicit 
methods have been coupled with spatial variable and time step for a particular problem to 
obtain simulations with a low computational cost, efforts have been made to identify the 
correct time step from the physical viewpoint, the time step size is restricted by stability 
reasons to fulfill the Courant–Friedrichs–Lewy (CFL) condition, while, few attentions on the 
time step with fully implicit scheme which is unconditionally stable in the non-steady 



 

computation and few time step with fully implicit scheme validations are studied but on the 
grid independency, meanwhile, there is not a suitable convergence method for the oscillation 
simulation.  
So, this is the motivation of our work, where a suitable convergence method for the 
oscillation simulation and an algorithm were established to overcome previous convergence 
method shortcoming, extensive calculations were performed and examined to a Joule heating 
flow in order to confirm the two independent methods. 
 

2. Convergence method and algorithm 
The rigorous convergent criterion has only been established for the equilibrium solution: the 
difference between two consecutive iterations is less than a predetermined value is considered 
to be convergence, the iteration process convergence to one steady-state solution. This is only 
applicable for the system which has the static values as time approaches to infinity. Therefore, 
it is no appropriate to use convergent criterion aforementioned above in the oscillation 
numerical simulation cases. 
A convergence method in the numerical simulation is addressed here which states that if the 
system is a stable oscillation system, as the time step decreases, the calculated values 
(including velocity and temperature) should be monotonous, theoretical speaking, at the same 
point in the same moment time, the reason is that the even smaller truncation error can be 
achieved because of decreasing time step size for the fixed grid spacing. It is desirable to use 
the smallest time step possible throughout the computation, the difference of the computation 
values with different two time steps at the same space point in the same moment time is less 
than a predetermined value is considered to be the convergence solution. But in practical 
simulation, the computer is finite precision, so as the time step decreases more, the round-off 
error is primary. Consequently, the smallest time step cannot be viewed as the solution 
approached to the correct one, the solution properties at the same point in the same moment 
time as the time step is refined is non-monotonic. Therefore, the numerical solutions can 
converge at the inflection point with respect to the time step, in this way, it is possible to 
determine which time step is the appropriate convergence solutions, and it can be ensured to 
obtain the accurate solution as much as possible. This is the convergence concept for the 
stable oscillation case. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
  

Figure 1 flow chart of time step identification 
 

A practical algorithm of judging the accuracy of the above analysis for oscillations results is 
suggested below (see Figure 1 for more details), first we use one time step to compute a case 
until it reaches a stable periodic solution; then sequentially reducing time step to check its 
convergence, for example, the time step equals to 610−=∆τ :  
Step 1 From 10 ττ ≤< , choose of 1τ  is large enough for the computational result reached a 
periodic motion whose period is T1 and the amplitude is A1. The purpose of this period is to 
lock the numerical solution into a special mode, we hope that the truncation error is sufficient 
to alter the initial condition and leads to a special solution among many possibility. 
Step 2 Continue the computation from 21 τττ ≤<  with 2/10 6−=∆τ . 2τ  is large enough 
for the computational results to reach another periodic solution, its period is T2, and the 
amplitude is A2. If  (T2=T1), and A2 is close to A1, then the solution may have some 
meaning. 
Step 3 Continue the computation from 32 τττ ≤< with 4/10 6−=∆τ . If (T3 = T2) and 
A3-A2 is smaller than A2-A1, then the results have chance to converge. Then , return to the 
other time step, repeat the above steps until time step corresponding the convergence of the 
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solution is reached. The alternative convergence method and choosing the correct time step 
size algorithm for the solution of the oscillation numerical simulation are more accurate than 
the previous convergent method, and this is more general approach. In the next section, the 
method presented above will be validated and analyzed by the numerical simulation test. 
 
3. Numerical experiments  
In the previous section, the convergence approach and algorithm of indentifying adequate 
time step were discussed. In this section, we investigate the convergence approach using an 
example of case study.  
 
3.1 Physical model and the problem formulation 
The problem under consideration is the combined natural and MHD convection, as 
demonstrated in Zhang [12], the system considered is shown in Figure 2. The fluid contained 
in the rectangular pool is heated by a pair of vertical electrodes, which are assumed to be 
isopotential surfaces with an externally applied potential difference of ϕ0 across them. The 
bottom boundary is assumed to be electrically insulated. In the present study, low frequency 
alternating current sources are considered for Joule heating. All the boundaries of the cavity 
are solid–fluid interfaces, which can be treated as no-slip and no-penetration boundaries. The 
upper boundary of the liquid cavity is an isothermal surface at T = T0, while the rest of the 
boundaries are assumed to be thermally insulated. The aspect ratio of the pool is set to be 
W:L=2:1. 
 

 
Figure 2 Schematic of the system under consideration 

 
In the present model, flow is simulated as a two dimensional phenomenon with the following 
assumptions or simplifications: a) the fluid is Newtonian, incompressible and the flow is 
laminar; b) the effect of temperature on fluid density is expressed adequately by the 
Boussinesq approximation; c) the local electrical conductivity is independent of the thermal 
field. 
The governing equations presented in Zhang [12] will not be repeated here just for the brevity.  
In order to guarantee both the numerical stability and solution accuracy, the SGSD scheme [2] 
is employed for the discretization of the convection terms, which is absolutely stable and 
adaptive. The SGSD scheme can automatically choose a different difference scheme 
according to the available local field information in difference space or time. The diffusion 
terms are discretized by the central difference scheme. The IDEAL [4] [5] algorithm is 



 

adopted which exists inner doubly iterative processes for the pressure equation. The coupling 
between the velocity and pressure is fully guaranteed, greatly enhancing the convergence rate 
and the stability of the iteration process. While dealing with the time-dependent physics 
problem for the un-steady state governing equations. It has been theoretical analyzed that the 
fully implicit scheme is unconditionally stable for SGSD scheme in un-steady convection 
diffusion equation, it is not repeated here for simplicity. 
 It must be noted that, the Rayleigh number and the Hartman number which are investigated 
here are smaller than the critical Rayleigh number and the critical Hartman number 
respectively. The zero initial conditions are set for velocity and temperature fields. 
Grid sensitivity analysis is performed and the accuracy of the numerical procedure is further 
validated by comparing predicted results with the solutions obtained by Sugilal [13] on the 
same test case, the present procedure adequately predicts the flow and heat transfer inside the 
system considered. 
 

3.2 Numerical Results  
The main goal of the present study is not only to obtain the accurate solution but also to 
investigate its stability. The computational efficiency (low demand on CPU time) of the 
present study is not considered here. 
 
3.2.1 Time step validation for Pr=1 ,Ra=15000 and Ha=0 
We perform the numerical simulations for four values of the time step ( Δτ ) ranging from 
Δτ=10-3 to Δτ=10-6, while keeping the other relevant parameters fixed ( i.e., Ra =15000, Pr 
=1 and Ha =0) . This approach is aimed to evaluate the sensitivity of the time step. All the 
computations start from a zero field initialization and are stopped at τ = 4. Throughout the 
simulations, the time histories of the dimensionless temperature and velocity components are 
recorded at a monitoring point (X,Y) = (0.25,0.483) inside of the cavity. All the simulation 
results exhibit a common behavior as depicted in Fig. 3, where the dimensionless temperature 
reaches a steady state of the solution as the time increases, and it has a similar behavior for 
the velocity components. The solution for a particular time step is considered converged 
when the iteration makes no change to the solution in any of the variables U, V or θ. This 
convergence method is not necessarily the best, but it is a commonly used. 
  

 
Fig. 3 Evolution of U-velocity (left) and temperature (right) in monitoring point 

(X,Y=0.25,0.483) of the cavity for Δτ=0.0001 
 
The only difference in Table 1 is the momentum residual ,we find that as the Δτ decrease 
from 0.001 to 0.0001, the momentum residual decreases. While when Δτ decreases more the 
momentum residual  increases, this can be explained that the truncation error is smaller 



 

when Δτ decreases，while when Δτ decreases more the round-off error is bigger and the more 
accurate time step is 10-4.   

 
Table 1. Residuals , dimensionless temperature at τ = 4 at a monitoring point (X,Y) = 

(0.25,0.483)   
 

Case Time 
step 

Mass   
residual 

              
Momentum  Residual 

a 0.001 1.2822E-09 1.7986E-02 8.5379E-03 
b 0.0001 3.3605E-13 4.6960E-06 2.9421E-06 
c 0.00001 2.6585E-13 2.2607E-05 1.5130E-05 
d 0.000001 3.3216E-13 4.2578E-04 2.6565E-04 

 

3.2.2 Time step validation for Pr=0.01, Ra =15000 and Ha=0 
We perform the numerical simulations for four values of the time step ( Δτ ) ranging from 
Δτ= 10-4 to Δτ=10-7, while keeping the other relevant parameters fixed  ( i.e., Ra =15000, Pr 
=1 and Ha =0) .  All the computations start from a zero-field initialization and are stopped at 
τ=1. Throughout the simulations, the time histories of the dimensionless temperature and 
velocity components are recorded at a monitoring point (X,Y) = (0.25,0.483) as shown in 
Fig.4. 
 
 

 
Fig. 4 Evolution of U-velocity (left) and temperature ( right ) in a monitoring point (X, Y) 

=( 0.25 ,0.483) of the cavity for Δτ=0.0001 
 
The time history of the dimensionless temperature(θ) and the time history of the 
dimensionless x-velocity component (U) exhibit a common behavior in different time steps 
for all the cases examined. It is worthwhile to note that the sensitivity to the initial conditions 
associated with a set of non-linear differential equations is a reflection of a characteristic of a 
non-linear physical system, to pursue this property more fully. It can be verified by a 
non-zero field in procedure at τ=0 whose components take random values from -1 to 1 
generated by the computer. The results keep the same as those of zero initial conditions. It 
should be noted that the computation for Rayleigh number (Ra=15000) is less than the 
critical Rayleight number, verifies the system is to make stable oscillation. 
The question is which time step corresponds to the accurate solution and how to identify the 
convergence, while the method of considering convergence when the monitoring value makes 
a small change cannot be applied in this case, as the θ and U are oscillated with the time. 
These results suggest that there is no apparent convergence of comparing the numerical 



 

values during the iterations. It can be verified with proposed method in section 2 by the 
numerical simulation results below. Fig.5 shows that the V-velocity and temperature are 
monotonically decrease as the time step decreases. The truncation errors become the primary, 
on the contrary when Δτ is 10-6, as the time step decreases, the V-velocity monotonically 
increases. This is because the round-off errors become the primary errors. In order to get 
more accurate results, the correct time step should be 10-6, where in this case the residuals are 
relatively smaller (see Table. 2), so the more accurate solutions can be obtained. From the 
experiment we validate the convergence analysis method.  
 

 
Table 2.  Comparisons of the mass and momentum residuals 

 
Case Time step   Mass residual Momentum residual 
A 0.0001 6.4119E-04 1.0649E-02 1.8723E-02 
B 0.00001 8.6406E-05 6.9381E-03 9.3104E-03 
C 0.000001 2.5270E-06 2.1513E-02 2.0302E-02 
D 0.0000001 2.3201E-08 7.4870E-03 9.3305E-03 

 

    
Fig. 5. Comparison of V-velocity and temperature calculated by different time steps at 

the same moment time (τ=1) in a monitoring point (X,Y=0.25,0.483) of the cavity 
 
A practical algorithm of judging the accuracy for oscillations results in section 2 is 
implemented, the experiment results for different time steps are listed in Table 3 which 
confirm our analysis, and the correct time step should be 10-6. 
 

Table 3. Periods and amplitudes of periodic oscillation for each Δτ 
time step/ 

 Δτ 
periods of the periodic 

oscillations/T 
amplitudes of the 

periodic oscillations/A 
10-4 0.00765 0.0179 

10-4/2 0.00487 0.01424 
10-4/4 0.003437 0.010512 
10-5 0.002563 0.00823 

10-5/2 0.002287 0.00728 
10-6 0.002055 0.008 

10-6/2 0.002007 0.0081 
10-6/4 0.002114 0.00814 

 

3.2.3 Time step validation for Ha = 7000 and Ra = 0  



 

The numerical simulations for four values of the time step are performed where , Δτ, ranging 
from Δτ = 10-4 to Δτ=10-7, while keeping the other relevant parameters fixed ( i.e., Ha = 7000, 
Pr =0.01 and Ra =0) .All the computations start from a zero-field initialization and are 
stopped at τ=0.2. Throughout the simulations, the time histories of the dimensionless 
temperature and velocity components are recorded at a monitoring point (X,Y)=(0.25,0.483) 
as shown in Fig. 6. The computed U results at a monitoring point (X=0.25,Y=0.483) take the 
oscillation in the average of 400 , 460 and 100 for the three different time steps respectively. 
It can be seen that, the solutions are apparently quite close to each other for the different time 
steps except Δτ=0.0000001. 
 

 
Fig. 6.Evolution of U-velocity (left) and temperature ( right ) in a monitoring point 

(X,Y=0.25,0.483) of the cavity for Δτ=0.00001 
 
The non- zero field in procedure at τ = 0 whose components take random values from -1 to 1 
which are generated by the computer is implemented, where the results keep the same as 
those of the zero initial condition. This verifies the system is not non-linear at present 
computation conditions. It can be seen  from Fig. 7 , that the moment time records increase 
monotonically with decreasing time step to Δτ =10-6, then it decreases with decreasing time 
step furthermore. The optimal time step should be 10-6, and the residuals are relatively small 
one (Table 4) in this case. Similarly, the method stated in section 2 for the selection time step 
is utilized again with sequentially reducing Δτ by factor two and comparison of the results. It 
can be got clearly that the correct time step should be 10-6.  
 

Table 4.  Comparisons of the mass and momentum residuals 
Case Time step   Mass residual Momentum residual 
A 0.0001 1.0177E-03 1.9489E-02 1.1435E-02 
B 0.00001 1.1858E-04 5.5880E-03 3.5529E-03 
C 0.000001 2.2849E-06 4.1785E-03 4.8898E-03 
D 0.0000001 3.2633E-08 4.1209E-03 4.6373E-03 

 



 

   
Fig. 7. Comparison of V-velocity and temperature calculated by different time steps at 

the same moment time (τ=0.2) in a monitoring point (X,Y=0.25,0.483) of the cavity 
 

3.2.4 Time step validation for Pr = 0.01, Ha=7000 and Ra=15000 
The time-periodic solutions are predicted shown in Fig. 8 which reports the time dependent 
behavior of the dimensionless velocity and temperature at the monitoring point 
(X,Y=0.25,0.483) of the cavity. Fig.9 shows that the oscillations start at τ～0.08 and the 
computed U at a monitoring point takes the oscillatory center value of 230. 
 

 
Fig. 8.Evolution of U-velocity (left) and temperature ( right ) in a monitoring point 

(X,Y=0.25,0.483) of the cavity   for τ∆ =0.00001 
 
We find that the results are different in different time steps as shown in Table 5. For cases A 
and B, the time step width is of the order of 10-3 and 10-4, residuals for momentum equation 
and mass equation are of the order of 10-4. The time step width is of the order of 10-5 for case 
C, and the residuals are of the order of 10-5.For cases D and E, the considered smaller time 
steps are, 10-6and 10-7 respectively, the residuals of the order of 10-2.Such small time step 
width gives much larger residuals, the different truncation errors associated with different 
time-steps, in effect, lead to a series of residuals. A non-zero field in procedure at τ=0 whose 
components take random values from -1 to 1 which are generated by the computer is 
implemented and the experiment results are the same as the zero initial condition. Therefore, 
this confirms the system is not a non-linear system. 
 The convergence of the solution properties as the time step refined is no monotonically at the 
same zero initial condition, this can be seen from Fig. 9, where the moment time records 
increase monotonically with decreasing time step to τ∆  =10-5, then it decreases with 
decreasing time step. The correct time step should be 10-5. In this case the residuals (see Table 



 

5) are the smallest one, accuracy of the solution can be obtained, and the total errors keep in 
an admissible bound. Consequently, we can also check these time steps as the step stated in 
section 2 by sequentially reducing (Δτ) by factor two. It is found that the results obtained are 
in excellent agreement with the analytical numerical results, and it is confirmed that the 
optimal time step should be 10-5 . 

 
TABLE 5.  Comparisons of the mass and momentum residuals 

 
Case Time step   Mass residual Momentum residual 
A 0.001 2.9206E-4 4.7253E-4 7.6886E-4 
B 0.0001 3.1185E-5 1.6895E-4 1.5762E-4 
C 0.00001 2.5432E-6 7.2870E-5 5.7573E-5 
D 0.0000001 2.4611E-6 1.8177E-2 1.4063E-2 
E 0.00000001 3.6968E-8 2.9424E-2 2.0477E-2 

 

  
Fig. 9. Comparison of  V-velocity (left) and temperature ( right ) calculated by 

different time steps at the same  moment time (Δτ=0.4) in a monitoring point (X, 
Y=0.25,0.483) of the cavity 

 
4. Conclusions 
The convergence method in the numerical simulation provided that the system is stable 
oscillation is present in the present paper , where the solution properties at the same point in 
the same moment time with refined time steps are non-monotonic for the stable oscillation 
model. So, the numerical solutions can converge at the inflection point with respect to the 
time step, therefore in this way it is possible to determine which time step is the appropriate 
convergence solution. In order to obtain the accurate solution as much as possible, the results 
of the numerical experiments are presented and they confirm our theoretical predictions. 
Therefore, an algorithm to verify the appropriate time step is suggested. First use one time 
step to compute a case until it reaches a stable periodic solution; then sequentially reducing 
time step to check its convergence. The numerical accuracy of the proposed method has also 
been demonstrated via its application to more complex two-dimensional Joule heating flow 
problem. The feasibility of the proposed method is further verified. It is found that the results 
obtained in all the test cases with the suggested algorithm are in excellent agreement with the 
analytical as well as the established numerical results, underlining the high validity of the 
method. The new methods are somewhat more complex and the accuracy of the results is 
greatly improved. Meanwhile, the proposed methods are considered universal and can be 
applied to other unsteady computation engineering calculations.  
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