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Abstract 

Certain traditional methods of Calculus for solving DEs and systems of  DEs in engineering 
analysis depend in one form or another on the use of some general initially assumed analytical 
representation of the intended solution. Unfortunately this often leads to defining one or several 
integrals that cannot always be resolved exactly.  In order to avoid this complication we propose 
that the complete "differential" of a general initially assumed analytical representation of the 
intended solution with unknown coefficients to solve for be used instead as a means of solving for 
DEs and systems of  DEs.   Such a novel method of differential analysis has led to the development 
of what appears to be some form of a unified theory of integration.   This would represent the 
greatest opportunity by which the complete Navier-Stokes equations for incompressible flow in the 
presence of any external forces may be investigated for the existence of any "generalized" 
analytical solutions under the three most commonly used coordinate systems. 

Keywords: Universal Polynomial Transform, ODEs,  PDEs, Multinomial Expansion Theorem, 
Quantum Physics, Quantum computers, Navier-Stokes equations, Theory of everything. 

Introduction 

Such a non-traditional method of using this unique form of differential analysis in Calculus would 
have the real potential of defining integrals that can be completely resolved because a certain 
number of these initially assumed "differentials" are expected to become "exact" from the 
application of a well defined computational process. This would represent a very significant 
departure from current traditional methods of engineering analysis favoring a purely "numerical" 
method of integration in cases by which no real analytical solution to many fundamental DEs and 
systems of DEs in engineering science is possible. The greatest advantage of performing such a 
type of analysis strictly at the differential level has led to the development of some type of a unified 
theory of integration that can be applied for finding approximate or in some cases exact analytical 
solutions to "all types" of  DEs and systems of DEs encountered in engineering analysis. The entire 
process of analytical integration now becomes a matter of pure computational analysis just for 
identifying those differentials that are exact and thus completely integrable.  Such a very unique 
method of differential analysis will be applied for the complete analytical solution of a number of 
randomly selected  DEs  that would include a first and second order ODE as well as a second order  
PDE.  The outcome of having performed such a detailed differential analysis on these very simple 
DEs may provide us in the long term with some basic fundamental tools of analysis by which a 
generalized theory of the Navier-Stokes equations may be possible in the foreseeable future.  Not 
surprisingly since such a novel method of differential analysis has led to the development of a  
computational based unified analytical  theory of integration.   Beyond the Navier-Stokes equations 
are other equations of significant importance to the physical sciences that would include Maxwell's 
equations, Einstein's field equations, the Schrödinger equation just to name a few.   Each of these 
fundamental equations of science would define their own very unique ideology all of which may 
one day be consolidated into one gigantic universal theory of everything.  
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1.  Universal differential form representation of all mathematical equations 

For solving a  DE  or a system of  DEs, an alternative representation in complete differential form 
for a generally assumed system of  "k"  number of implicitly defined multivariate mathematical 
equations in the form of   "𝑓𝑘(𝑧𝑚, 𝑥𝑛) = 0"   that consist of  "m"  number of  dependent variables and  
"n"  number of  independent variables  [Mikalajunas (2015)]  may be completely defined as :  

(1).  Primary Expansion: 

                  𝐹𝑖(𝑊1,𝑊2, … ,𝑊𝑝+𝑞)  =   0  =   ∑𝑎𝑖,𝑡 (∏𝑊
𝑗

𝐸𝑖,𝑘𝑗

𝑝+𝑞

𝑗

)

𝑟

𝑡

           (1 ≤ 𝑖 ≤ 𝑘)      (1) 

where "𝑊𝑗"  for  1 ≤ 𝑗 ≤ 𝑝  are arbitrarily defined auxiliary variables that take part in representing 

the complete initially assumed analytical solution of a  DE  or a system of  DEs.   For any number 

of basis functions that are present in a  DE or a system of DEs we would have to define an 

additional "q" number of known supplemental auxiliary variables for including each of their 

differential expansion as part of the complete overall expansion for representing the system of  "k" 

number of implicitly defined multivariate equations.  In such cases, the total number of auxiliary 

variables would grow from  "p"  to "𝑝 + 𝑞"  when such basis functions are present in these types of  

DEs.   Each of the "p" number of arbitrarily defined auxiliary variables are always initially assumed 

as raised to some floating point number and finally, "r"  refers to the total number of multivariate 

polynomial terms that are present in each of the  "k"  number of implicitly defined multivariate 

polynomial equations. 

 

(2).  Secondary Expansion: 

𝑑𝑧𝑖  =   𝑑𝑊𝑖                                        (1 ≤ 𝑖 ≤ 𝑚) (2) 

 𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                   (1 ≤ 𝑖 ≤ 𝑛)    (3) 

 

∑𝑁𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑𝑁𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

  

 

                                   =   𝑁𝑖(𝑚+𝑛+1)𝑑𝑊𝑗          [1 ≤ 𝑖 ≤ 𝑝 + 𝑞 − 𝑚 − 𝑛]  [𝑚 + 𝑛 + 1 ≤ 𝑗 ≤ 𝑝 + 𝑞]    (4) 

 

As in the case of the Primary Expansion, each of the expressions for  "𝑁𝑢"  in equation (4)  is also 
defined as a multivariate polynomial with unknown coefficients and floating point exponent values 
to solve for.  

And finally we have, 

∑𝑇𝑖(𝑚+𝑛+1)−𝑚−𝑛−1+𝑡𝑑𝑧𝑡   +    ∑𝑇𝑖(𝑚+𝑛+1)−𝑛−1+𝑡𝑑𝑥𝑡

𝑛

𝑡=1

   =  

𝑚

𝑡=1

 

                                                         =   𝑇𝑖(𝑚+𝑛+1)𝑑𝑊𝑗         [1 ≤ 𝑖 ≤ 𝑞]  [𝑝 ≤ 𝑗 ≤ 𝑝 + 𝑞]    (5) 

 



 

where each of the expression for  "𝑇𝑢" in equation (5) is also a multivariate polynomial but this time 
containing only known coefficient and exponent values that are reserved exclusively for defining 
each of the basis functions that would be present inside a DE  or a system of  DEs. 

At the present time there is no other known universal representation of all mathematical equations 
consisting only of algebraic and elementary basis functions other than the one suggested above.   
 
In complete expanded form we would write this as follow: 
 

(1).  Primary Expansion: 

 𝐹1  =   0  =    𝑎1,1𝑊1
𝑚11𝑊2

𝑚12 ∙∙∙ 𝑊𝑝+𝑞

𝑚1,𝑝+𝑞  +   𝑎1,2𝑊1

𝑚1,𝑝+𝑞+1𝑊2

𝑚1,𝑝+𝑞+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚1,2(𝑝+𝑞)     

                                               + … +    𝑎1,𝑟𝑊1

𝑚1,(𝑝+𝑞)(𝑟−1)+1𝑊2

𝑚1,(𝑝+𝑞)(𝑟−1)+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚1,𝑟(𝑝+𝑞)   (6) 

 𝐹2  =   0  =    𝑎2,1𝑊1
𝑚21𝑊2

𝑚22 ∙∙∙ 𝑊𝑝+𝑞

𝑚2,𝑝+𝑞  +   𝑎2,2𝑊1

𝑚2,𝑝+𝑞+1𝑊2

𝑚2,𝑝+𝑞+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚2,2(𝑝+𝑞)     

                                               + … +    𝑎2,𝑟𝑊1

𝑚2,(𝑝+𝑞)(𝑟−1)+1𝑊2

𝑚2,(𝑝+𝑞)(𝑟−1)+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚2,𝑟(𝑝+𝑞)   (7) 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

 𝐹𝑘  =   0  =    𝑎𝑘,1𝑊1
𝑚𝑘1𝑊2

𝑚𝑘2 ∙∙∙ 𝑊𝑝+𝑞

𝑚𝑘,𝑝+𝑞  +   𝑎𝑘,2𝑊1

𝑚𝑘,𝑝+𝑞+1𝑊2

𝑚𝑘,𝑝+𝑞+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚𝑘,2(𝑝+𝑞)     

                                               + … +    𝑎𝑘,𝑟𝑊1

𝑚𝑘,(𝑝+𝑞)(𝑟−1)+1𝑊2

𝑚𝑘,(𝑝+𝑞)(𝑟−1)+2 ∙∙∙ 𝑊𝑝+𝑞

𝑚𝑘,𝑟(𝑝+𝑞)   (8) 

 

(2).  Secondary Expansion: 

𝑑𝑧𝑖  =   𝑑𝑊𝑖                                        ( 1 ≤ 𝑖 ≤ 𝑚 ) (9) 

  𝑑𝑥𝑖  =   𝑑𝑊𝑚+𝑖                                   ( 1 ≤ 𝑖 ≤ 𝑛 )    (10) 

[ 𝑁1𝑑𝑧1 +  𝑁2𝑑𝑧2  +  … +  𝑁𝑚𝑑𝑧𝑚 ]   +   [ 𝑁𝑚+1𝑑𝑥1  +   𝑁𝑚+2𝑑𝑥2   +  … +     

                                                                         + … +  𝑁𝑚+𝑛𝑑𝑥𝑛 ]    =   𝑁𝑚+𝑛+1𝑑𝑊𝑚+𝑛+1   (11) 

 [ 𝑁𝑚+𝑛+2𝑑𝑧1  +   𝑁𝑚+𝑛+3𝑑𝑧2   +  … +  𝑁2𝑚+𝑛+1𝑑𝑧𝑚]   +    [ 𝑁2𝑚+𝑛+2𝑑𝑥1   +     
 

                             +  𝑁2𝑚+𝑛+3𝑑𝑥2    + … +  𝑁2(𝑚+𝑛+1)−1𝑑𝑥𝑛 ]    =   𝑁2(𝑚+𝑛+1)𝑑𝑊𝑚+𝑛+2   (12) 

 

 



 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

[ 𝑁(𝑝+𝑞−1)(𝑚+𝑛+1)+1𝑑𝑧1  +  𝑁(𝑝+𝑞−1)(𝑚+𝑛+1)+2𝑑𝑧2   +  … +  𝑁(𝑝+𝑞−1)(𝑚+𝑛+1)+𝑚𝑑𝑧𝑚 ]   +  

 +  [ 𝑁(𝑝+𝑞−1)(𝑚+𝑛+1)+𝑚+1𝑑𝑥1  +   𝑁(𝑝+𝑞−1)(𝑚+𝑛+1)+𝑚+2𝑑𝑥2    +  … +  𝑁(𝑝+𝑞)(𝑚+𝑛+1)−1𝑑𝑥𝑛 ]    = 

                                                                                                                =   𝑁(𝑝+𝑞)(𝑚+𝑛+1)𝑑𝑊𝑝+𝑞   (13) 

 
 
The actual process of transforming a complete mathematical equation or a system of mathematical 
equations in terms of the above universal differential form representation is referred to as taking its 
Multivariate Polynomial Transform.  The complete reverse process of going from a differential 
form representation back to the original complete mathematical equation or system of mathematical 
equations would be referred to as taking the inverse of a Multivariate Polynomial Transform.  This 
would involve following a very unique integration process in the Secondary Differential Expansion 
for determining the complete analytical expression corresponding to each auxiliary variable.  They 
in turn would each be substituting back into the  Primary Expansion  for arriving at the complete 
original expression in the form of   "𝑓𝑘(𝑧𝑚, 𝑥𝑛) = 0". 

Appendix A  provides a list of the Multivariate Polynomial Transform corresponding to a variety of 
univariate and multivariate mathematical equations.  For simplicity, both the Sine and Cosine 
function have been expressed as a rational combination of  the Tangent function using the following 
basic trigonometric identity: 

𝑆𝑖𝑛(𝑥) =   
2𝑇𝑎𝑛(𝑥/2)

1 + 𝑇𝑎𝑛2(𝑥/2)
 (14) 

 
Just by increasing the total number of dependent and independent variables, the concept of a 
Multivariate Polynomial Transform is still applicable for including all  systems of mathematical 
equations as well.  However, space limitation prevents the inclusion of these types of mathematical 
equations as good illustrative examples.  

 

2.  Unique template for investigating the probable existence of  complete "general" analytical     
      solutions to  DEs  and systems of  DEs  by using a method of  conjecture 

A necessary condition for defining a complete unified analytical theory of integration is by 
substituting an initially assumed version with unknown coefficients to solve for of the universal 
differential form representation of all mathematical equations as described  by equations (1) through 
(5) into any type of  DEs  and systems of  DEs.  This would always result into defining a very 
unique type of  system of nonlinear simultaneous equations to solve for.  The exact numerical 
solution sets obtained would then be used as a means of inverting the corresponding initially 
assumed differential expansions for arriving at an exact or approximate analytical solution that 
would be expressible only in terms of the algebraic and elementary basis functions. 

Such an initially assumed differential expansion form would possess all the characteristics of a 
complete mathematical transform so we would refer to it as an  initially assumed Multivariate 
Polynomial Transform  or  in short  IAMPT. 

𝐶𝑜𝑠(𝑥) =   
1 − 𝑇𝑎𝑛2(𝑥/2)

1 + 𝑇𝑎𝑛2(𝑥/2)
  (15) 



 

The entire process of using an  IAMPT for solving DEs  and systems of  DEs can be divided into 
two fundamental stages.  The first, is the computational stage by which the corresponding nonlinear 
simultaneous equations of a DE or a  system of  DEs  are numerically derived and completely 
solved for.  The second, is the analytical stage by which every numerical solution set obtained is 
converted to pure analytical form.  This would involve the process of identifying and solving for 
those exact integrals that are present in the Secondary Expansion which have successfully pass the 
complete test for exactness.  From this exact integration process, the complete expression for each 
initially assumed set of auxiliary variables are obtained and substituted into the Primary Expansion  
for arriving at the complete analytical solution of  the  DE  or  system of  DEs. 

When selecting a suitable IAMPT for solving a particular DE or a system of  DEs, the total number 
of unknown coefficients and floating point exponent values to solve for becomes purely arbitrary 
and should be as high as possible.  This is necessary as a means of capturing those "exact"  
analytical solutions that can successfully resolve a  DE  or a system of  DEs uniquely in terms of 
some combination of algebraic and elementary basis functions.  The limitations on the total number 
of unknown coefficients and exponent values to solve for as defined from an  IAMPT  is generally 
set by the capacity of a computer system to handle extremely large numbers of very complex 
nonlinear simultaneous equations to solve for. 

The resultant system of nonlinear simultaneous equations to solve for will always consist of an 
infinite number of exact numerical solutions sets provided that the  IAMPT  has been chosen large 
enough to contain the exact solution of the  DE  or system of  DEs  that is being solved for. 

Some of the reasons that would account for the existence of such an infinite number of numerical 
solution sets are: 

 The ability for an exact solution to a  DE  or a system of  DEs  to satisfy an infinite number 
of  initial conditions. 
 

 The permutation of each auxiliary variable present in both the Primary and Secondary 
Expansion for representing the same identical exact analytical solution of  the DE  or system 
of  DEs.  

 
 As a result of the natural computational process involved in solving for a very large number 

of  complex nonlinear simultaneous equations, many numerical solutions sets obtained are 
expected to define numerous types of trivial algebraic identities from the process of 
inverting the corresponding IAMPT.  Such type of identities will always be present in one 
form or another in the final representation of the analytical solution.  A good example is the   
"𝑆𝑖𝑛2(𝑥)  + 𝐶𝑜𝑠2(𝑥) = 1"  or any other algebraic variations of  this trigonometric identify that 
would also include other types of basis functions as well. 
 

 The presence of  singular solutions.  
 

 As a result of the natural computational process involved in solving for a very large number 
of complex nonlinear simultaneous equations, many numerical solutions sets obtained will 
naturally lead to the formation of one or several expressions in the Secondary Expansion 
that would be represented as a ratio of two exactly identical multivariate polynomials.  
These types of ratios would be considered as trivial ratios that would have to be all 
completely eliminated before any attempts is made for  inverting a  Secondary Expansion. 

For every numerical solution set obtained as a result of solving for these nonlinear simultaneous 
equations there will always be a corresponding exact analytical solution satisfying a "unique" set  of 
initial conditions.  We would refer to the existence of such a type of exact analytical solution as an 
"instance solution".  As there are an infinite number of possible numerical solution sets of the 
nonlinear simultaneous equations this will give rise to an infinite number of such instance solutions.   



 

By consolidating a sufficient number of such instance solutions we can by using a method of 
conjecture potentially uncover more complete "generalized" versions of analytical solutions 
satisfying a general DE or a system of  DEs.   It therefore becomes quite imperative that as a result 
of solving for the nonlinear simultaneous equations we always continuously keep track of all 
instance analytical solutions obtained in the form of a table that we would like to refer as a  
"numerically controlled system of analytics table"  or  in short an  (NCSA)  table.  

The following general system of  PDEs  of any order can be used for describing the most general 
case of an  NCSA  table: 

𝐺𝑘  =   𝐺𝑘 (𝑧1, 𝑧2, … , 𝑧𝑚, 𝑥1, 𝑥2, … , 𝑥𝑛,
𝜕𝑧1

𝜕𝑥1
, … ,

𝜕𝑧1

𝜕𝑥𝑛
,
𝜕𝑧2

𝜕𝑥1
, … ,

𝜕𝑧2

𝜕𝑥𝑛
, … ,

𝜕𝑧𝑚

𝜕𝑥1
, … ,

𝜕𝑧𝑚

𝜕𝑥𝑛
  , … ,     

                     , … ,
𝜕2𝑧𝑚

𝜕𝑥1𝜕𝑥1
  , …,   

𝜕2𝑧𝑚

𝜕𝑥1𝜕𝑥𝑛
  , …,   

𝜕2𝑧𝑚

𝜕𝑥2𝜕𝑥1
, … ,

𝜕2𝑧𝑚

𝜕𝑥2𝜕𝑥𝑛
 , …, 

 

                                                                                                      , … ,
𝜕2𝑧𝑚

𝜕𝑥𝑛
2

, … …,   
𝜕𝑟𝑧𝑚

𝜕𝑥𝑛
𝑟

 )  =   0  
(16) 

 
 
In this case, the  NCSA  table would be represented as follow: 
 

𝐺𝑘 =   0 

Initial                                             Coefficient                       Exact analytical solution 

Conditions                                     values present                 obtained using the Multivariate         

                                                       in the  DE or                  Polynomial Transform method 

                                                       system of  DEs  

𝑧01, 𝑧02, … , 𝑧0𝑚, 𝑥01, … , 𝑥0𝑛  …                   𝑎0, 𝑏0, 𝑐0, …                                                 𝑈1  =   0         
 

𝑧11, 𝑧02, … , 𝑧0𝑚, 𝑥01, … , 𝑥0𝑛  …                   𝑎1, 𝑏0, 𝑐0, …                                                 𝑈2  =   0         
 

𝑧01, 𝑧12 , … , 𝑧0𝑚, 𝑥01, … , 𝑥0𝑛 …                   𝑎0, 𝑏1, 𝑐0, …                                                 𝑈3  =   0         

 

         .   .   .                                        .    .    .                                        .    .    . 

         .   .   .                                        .    .    .                                        .    .    . 

         .   .   .                                        .    .    .                                        .    .    . 

 

Table 2.1 

 
 
where  "𝑈𝑖 = 0"  would then be referred to as an  instance solution  satisfying the unique set of 
parameters contained in this table. 
 
 
 

 



 

 

Example (2.1).  For the simple two dimensional case that can be represented by the following 
general  first order  ODE,  

𝑥
𝑑𝑦

𝑑𝑥
 +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2  =   0 

 

(17) 

the  corresponding  NCSA  table  may be constructed in the following manner:  

 

𝑥
𝑑𝑦

𝑑𝑥
 +   𝑎𝑦 +   𝑏𝑥𝑛𝑦2  =   0 

 

 

Initial                                            Coefficient                         Exact analytical solution 

Conditions                                     Values                               obtained using the Multivariate         

                                                                                                Polynomial Transform method 

 

𝑥0 = 1                                                  𝑎 = 1.0                              (−3𝑥 +  𝑥−1)𝑦 +   2 =  0 

𝑦0 = 1                                                  𝑏 = 1.0                                           
                                                               𝑛 = −1.0                                           

𝑥0 = 1                                                  𝑎 = 1.2                              (1.4𝑥1.2  −  𝑥2)𝑦 −   0.80 =   0 

𝑦0 = 2                                                  𝑏 = −1.0                                           
                                                               𝑛 = 2.0                                           

𝑥0 = 1                                                   𝑎 = 1.2                            (1.7𝑥1.2 +  1.5−2)𝑦 +  3.2 =   0  
𝑦0 = −1                                                𝑏 = 1.5                                           
                                                                𝑛 = −2.0                                           

𝑥0 = 1                                                   𝑎 = 2.0                             𝑥2𝑦(0.5 −  ln(𝑥))  −   1  =   0  
𝑦0 = 2                                                   𝑏 = −1.0                                           
                                                                𝑛 = 2.0                                           

𝑥0 = 1                                                   𝑎 = 1.5                             (−2.75𝑥1.5 +   2𝑥3)𝑦 −  1.5 =   0  
𝑦0 = −2                                                𝑏 = 2.0                                           
                                                                𝑛 = 3.0                                           

𝑥0 = 1                                                   𝑎 = 1.0                             𝑥𝑦(1 +  ln(𝑥))  −   1.0  =   0  
𝑦0 = 1                                                   𝑏 = 1.0                                           
                                                                𝑛 = 1.0                                           
                                                           

𝑥0 = 1                                                   𝑎 = −1.0                      𝑥−1𝑦(−1 +   1.5 ln(𝑥))  −   1.0 =  0 

𝑦0 = −1                                                𝑏 = 1.5                                           
                                                                𝑛 = −1.0                                           
 

Table 2.2 

 



 

The evidence gathered from each of the above  instance solutions allows us to conclude by 

conjecture that: 

𝑓1(𝑥, 𝑦)  =   0 =   (𝐴𝑥𝐵  +   𝐶𝑥𝐷)𝑦 +   𝐸 (18) 

and: 

    𝑓2(𝑥, 𝑦)  =   0 =   𝑥𝐴𝑦(𝐵 +   𝐶 ln(𝑥))  +   𝐷 (19) 

both appear to be perfect candidates for the general exact analytical solution of the ODE where the 
coefficients  "A", "B", "C", "D" and "E"  are to be expressed in terms of the coefficients  "a", "b", 
"n" and the initial conditions of the  ODE. 

By substituting any one of these generally assumed analytical solution into the  ODE  and equating 
like terms to zero, we can derive a complete relationship that can exist between the known and the 
unknown coefficients. 
 
The general formula used for determining the first derivative of  "y"  is: 

𝑑𝑦

𝑑𝑥
 =   −

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
⁄   

(20) 
 

─ 
In our first assumption that  "𝑓1(𝑥, 𝑦) =   0 "  and upon equating like terms to zero in the  ODE,  

this would define the following system of equations to solve for: 

𝐴(𝑎 −   𝐵)                          =   0 (21) 

𝐶(𝑎 −   𝑛) −   𝑏𝐸             =   0 (22) 

(𝐴𝑥0
𝑎  +   𝐶𝑥0

𝑛)𝑦0  +   𝐸   =   0 (23) 

with exact solution [Mikalajunas 2015]: 

 𝐴  ≠   0 (24) 

𝐵 =   𝑎 (25) 

                               𝐶  =    
−𝐴𝑏𝑥0

𝑎𝑦0

𝑎 +   𝑏𝑥0
𝑛𝑦0 −   𝑛

 (26) 

                                                               𝐸  =    
(𝑎 −   𝑛)𝐶

𝑏
                            (𝑎 ≠ 𝑛) (27) 

Following the same type of logic for our second assumption that  "𝑓2(𝑥, 𝑦) =   0 ",  this would 

define the following system of nonlinear equations to solve for: 

𝐵(𝑎 −   𝑛) −   𝐶 −   𝑏𝐷        =   0 (28) 

𝐶(𝑎 −   𝑛)                                  =   0 (29) 

𝑥0
𝑛𝑦0(𝐵 +   𝐶 ln(𝑥0))  +   𝐷  =   0 (30) 

 

 



 

with exact solution [Mikalajunas 2015]: 

     𝐷  ≠   0 (31) 

          𝐶   =  −𝑏𝐷 (32) 

𝐵  =   
−𝐷

𝑥0
𝑛𝑦0

  −   𝐶 ln(𝑥0)    =   
 −𝐷  −   𝐶𝑥0

𝑛𝑦0 ln(𝑥0)

𝑥0
𝑛𝑦0

 
(33) 

Without having constructed the NCSA table it would have been very difficult to have correctly 
arrived at the complete  "general analytical solution"  of this first order ODE  that would satisfy all 
initial conditions as well.   There are currently no known traditional method of integration capable 
of deriving complete "general" closed form solutions to "any type" of  DEs  and systems of  DEs 
that would be entirely based on the use of a well defined  "exact"  method of computational analysis 
such as the one being proposed in this paper. 

 

The very unique mathematical properties of an  IAMPT when substituted into a  DE or a system 
of  DEs allows for all initial conditions to be fully accounted for.  This is because the exact 
integration process that is performed in the Secondary Expansion for determining an exact 
expression for each auxiliary variable must  always include the constant of integration which in turn 
would automatically define each of their initial values.  For every instance solution obtained, the 
overall contribution of each of these initial values for the auxiliary variables can easily succeed in 
completely matching the initial conditions of a  DE or a system of  DEs.  This becomes very 
obvious by noticing that the Primary Expansion of an IAMPT is always expressed as some 
algebraic combination of initially assumed auxiliary variables as well as known auxiliary variables.  
Its the  initial values of each of these auxiliary variables that can easily be adjusted numerically for 
satisfying the overall initial conditions of a DE or a system of DEs  by solving for the type of 
system of  nonlinear  equations in which there will always be more unknowns than available 
equations to solve them. 

Based on our previous example for the general first order ODE, we notice that every instance 
solution obtained would potentially lead towards defining a more generalized version of the exact 
analytical solution.  It is only through the painstaking gathering of this type of information in the 
form of a large distribution sample of instance solution sets can we succeed in determining only  by 
the method of conjecture complete general closed form solutions of  a  DE  or a system of  DEs. 

The complete consolidation of a large number of these generalized exact analytical solutions which 
would be the result of having solved for a large number of very distinct classes of  DEs  and  
systems of  DEs can potentially lead to defining some very fundamental theorems.  Case in point is 
the superposition theorem  being the result of  having solved mostly by trial and error a very 
distinct class of  linear second order  ODEs.   

By consolidating each of these fundamental mathematical theorems into one gigantic universal 
theory might represent our most realistic hope yet of ever arriving at some unified theory of 
everything.   

 
3.  The theory of everything not just about modern physics anymore 

To this day, the most accepted  definition of the  theory of everything is that it must remain an 
integral part of modern physics on the principle of defining a unique Space-Time model that would 
explain all the basic laws of this universe. 

However, what appears to be clearly lacking in our attempt to create such a grandiose physical 
theory for explaining everything about this universe is an equivalent grandiose mathematical theory 
that would have to succeed in explaining everything about the complete analytical integration of all  
types of  DEs  as well as all types of  systems of  DEs. 



 

Because  DEs are completely universal and not linked to any specific area of the physical sciences, 
there is  really no evidence to support that modern physics is the only real subject by which a 
complete theory of everything may be entirely constructed from. 

Rather, it would have to be  through the application of some unified theory of analytical integration 
that a theory of everything would be achievable.  This would be result of consolidating each 
fundamental theorem associated with a single Unified Physical System at a time  into one gigantic 
theory capable of explaining everything about this physical universe. 

The following block diagram suggests such a scenario by which DEs and systems of DEs would 
play a central role for establishing such a theory of everything where each  Unified Physical System   
would have its own very unique story to tell us that in the end we would need to know about: 
 

 

 

 

   THEORY OF  EVERYTHING       

 
Figure 3.1

The very mathematical nature of our proposed unified theory of analytical integration is built on the 
principle that  "analytical solutions"  to  DEs  and systems of  DEs  must be  constructed entirely on 
pure computational analysis.   

In the absence of  a unified theory of analytical integration, our understanding of the physical 
sciences cannot be complete as our method of analysis becomes reduced to a process that is mostly  
governed by unpredictable events.  Because Calculus is so deeply embedded into all of the physical 
sciences, how can we expect to devise a  theory of everything  without the use of some form of a  
unified analytical theory of integration that would be entirely driven by some  well defined method 
of  exact computational analysis ? 
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4.  Complete numerical example for a second order  ODE 

In our first example for the general first order ODE, we highlighted the importance of creating a 
special type of table called the NCSA table for providing much greater visibility towards the 
acquisition of  general closed form solutions.  Such a table would be constructed on the principle of 
creating a special type of database that would consist of a large number of instance solutions each 
satisfying  a predetermined number of control parameters that would include initial conditions and 
all the variable coefficients that take part in defining a  DE  or a system of  DEs.   

Corresponding to a unique set of control parameters would define a unique instance solution that 
would be obtained as a result of substituting an IAMPT  into a  DE or a system of  DEs and 
numerically solving for the resultant system of nonlinear simultaneous equations.  This would be 
followed by the complete transformation of the resultant  IAMPT  into a unique instance solution. 

As the number of  instance solutions grows, this would allow for much greater insight in 
determining by method of  conjecture if a more general analytical solution actually exists.  These 
types of closed form solutions have a far greater capacity towards a  much better  understanding on 
the very long term behavior of a physical system.  By consolidating each and every general 
analytical solutions obtained over a large class of  DEs  and systems of  DEs  into basic 
fundamental theorems, an even far much better understanding of the same physical system is 
possible.  Only as we progress further in the complete formulation of a large number of such 
specialized fundamental theorems can we expect to move closer towards the complete development 
of some form of a  theory of everything. 

 
In the following example, we have randomly selected a second order  ODE  and provided a 
complete step by step process for arriving at its complete exact analytical solution satisfying all 
initial conditions. 

Example (4.1).  Starting with the following second order  ODE: 

𝑦
𝑑2𝑦

𝑑𝑥2
    −    (

𝑑𝑦

𝑑𝑥
)
2

 { 1  −   
𝑑𝑦

𝑑𝑥
𝑆𝑖𝑛(𝑦)   −    𝑦

𝑑𝑦

𝑑𝑥
𝐶𝑜𝑠(𝑦) }   =    0 (34) 

there are two external inputs that are defined in terms of the  Sine  and  Cosine  function.   

For the sake of simplicity in our analysis, we can use the following  identities  for expressing each 
of the two trigonometric functions as a rational combination of  the half angle tangent function: 

𝑆𝑖𝑛(𝑢) =   
2𝑇𝑎𝑛(𝑢/2)

1 + 𝑇𝑎𝑛2(𝑢/2)
 

(35) 

 

𝐶𝑜𝑠(𝑢) =   
1 − 𝑇𝑎𝑛2(𝑢/2)

1 + 𝑇𝑎𝑛2(𝑢/2)
 (36) 

Based on the use of this half angle formula for the Tangent function, we begin by selecting a much 
simpler alternative representation for the  Sine  and  Cosine  function by defining: 

𝐻 =   𝑇𝑎𝑛(𝑦/2)  =   𝑊𝑝+1 (37) 

where  "𝑝"  is the total number of arbitrarily defined auxiliary variables from the  IAMPT  that will 
be selected for solving this second order  ODE. 
 



 

For this choice of auxiliary variable the corresponding Multivariate Polynomial Transform would 
be defined  as follow: 

 (1).  Primary Expansion: 

         𝐻(𝑊𝑝+1)  =   𝑊𝑝+1 

 

 
(38) 

(2).  Secondary Expansion: 

        𝑑𝑦 =   𝑑𝑊2 
(39) 

         0 ∙ 𝑑𝑥  +    (1 + 𝑊𝑝+1
2 )𝑑𝑦 =    2𝑑𝑊𝑝+1   (40) 

 

We can arbitrarily select our  IAMPT  as consisting of a maximum of  five  arbitrarily defined 
auxiliary variables so that   "𝑝 = 5".  There will be a total number of  six  terms in the Primary 
Expansion so that  "𝑢𝑃 = 6"  and  a total number of  four terms in the Secondary Expansion  so that  
"𝑢𝑆 = 4".  Because there is only one external input in the form of the  Tangent function for 
representing both the Sine and Cosine function, "𝑞 = 1"  thereby bringing the total number of 
auxiliary variables in the entire initially assumed expansion to six.  
 
For this selection of parameters, the corresponding  IAMPT  for solving this second order  ODE  
can be expanded as: 

(1).  Primary Expansion: 

         𝐹 =   0  =    𝑎1𝑊1
𝑚1𝑊2

𝑚2 ∙∙∙ 𝑊6
𝑚6  +     𝑎2𝑊1

𝑚7𝑊2
𝑚8 ∙∙∙ 𝑊6

𝑚12   +  … +     

                                                                                      + … +    𝑎6𝑊1
𝑚31𝑊2

𝑚32 ∙∙∙ 𝑊6
𝑚36   (41) 

(2).  Secondary Expansion: 

        𝑑𝑥 =   𝑑𝑊1 
(42) 

        𝑑𝑦 =   𝑑𝑊2 
(43) 

        𝑁1𝑑𝑥    +   𝑁2𝑑𝑦   =   𝑁3𝑑𝑊3 (44) 

        𝑁4𝑑𝑥    +    𝑁5𝑑𝑦   =   𝑁6𝑑𝑊4 (45) 

        𝑁7𝑑𝑥    +    𝑁8𝑑𝑦   =   𝑁9𝑑𝑊5 (46) 

        𝑁10𝑑𝑥  +    𝑁11𝑑𝑦  =   𝑁12𝑑𝑊6 (47) 

 

where:  

 

N1   =    b1W1
m1W2

m2 ∙∙∙ W6
m6     +  … +    b4W1

m19W2
m20 ∙∙∙ W6

m24   
 

(48) 

N2   =    b5W1
m25W2

m26 ∙∙∙ W6
m30   + … +    b8W1

m45W2
m46 ∙∙∙ W6

m48 (49) 

 

 

 



 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

                         .                                                     .                                                      . 

N9   =    b33W1
m193W2

m194 ∙∙∙ W6
m198   +  … +    b36W1

m211W2
m212 ∙∙∙ W6

m216  (50) 

 

To account for the presence of both the Sine and Cosine function inside the ODE we must 
define the following  three multivariate polynomials with  known  coefficient values: 
 

 

N10  =   0  (51) 

N11  =   1 +  Wp+1
2  =   1 +   W6

2    (52) 

and : 
 

N12  =   2 (53) 

 

We can compute the total number of unknowns to solve for  in our  IAMPT  using the following 
general  formula with  "𝑝 = 5",  "𝑢𝑃 = 6",  "𝑢𝑠 = 4"  and   "𝑞 = 1"  : 

                                NTotal  =   NPrimary  +  NSecondary   (54) 

              =   𝑢𝑃(𝑝 + 𝑞 + 1)    +   3 𝑢𝑆(𝑝 + 𝑞 + 1)(𝑝 − 2)   (55) 

          =   6(5 + 1 + 1)    +   3(4)(5 + 1 + 1)(5 − 2)   (56) 
 

               =   6(7)   +   12(7)(3)  =  42   +   252  =  294   
 

(57) 
 

We can express the entire  ODE  in terms of the following single large multivariate polynomial by 
taking its complete Multivariate Polynomial Transform using equation (35), (36)  and  (37): 
 

𝑊2

𝑑2𝑌

𝑑𝑋2
   −    (

𝑑𝑌

𝑑𝑋
)

2

 { 1  −   
𝑑𝑌

𝑑𝑋
(

2𝑊𝑝+1

1 + 𝑊𝑝+1
2 )  −   𝑊2

𝑑𝑌

𝑑𝑋
(
1 − 𝑊𝑝+1

2

1 + 𝑊𝑝+1
2 ) }   =   0 

 

(58) 

where we have selected: 

       𝑊1  =   𝑋 
(59) 

       𝑊2  =   𝑌 
(60) 

and where capital letters are used to indicate that a transformation from rectangular to complete 
multivariate polynomial form has taken place.  

 

 

 

 



 

A very general formula for calculating the first derivative of  a general IAMPT  may be defined as: 

               
 𝑑𝑌

𝑑𝑋
 =   

𝑃1

𝑄1
 =    −

𝜕𝐹

𝜕𝑊1
 ∏ 𝑁3𝑘  −   ∑ {𝑁3𝑗−8

𝜕𝐹

𝜕𝑊𝑗
∏ 𝑁3𝑘

𝑝+𝑞−2

𝑘=1
𝑘≠𝑗−2

}  

𝑝+𝑞

𝑗=3

𝑝+𝑞−2

𝑘=1

 

 
 
(61) 

                                                    _________________________________________ 

 

                                
𝜕𝐹

𝜕𝑊2
 ∏ 𝑁3𝑘   +   ∑ {𝑁3𝑗−7

𝜕𝐹

𝜕𝑊𝑗
∏ 𝑁3𝑘

𝑝+𝑞−2

𝑘=1
𝑘≠𝑗−2

}

𝑝+𝑞

𝑗=3

𝑝+𝑞−2

𝑘=1

 

where both  𝑃1  and   𝑄1  are each defined as a multivariate polynomial. 

By expressing this equation in the following form: 

  
 𝑑𝑌

𝑑𝑋
𝑄1  −   𝑃1  =   0 (62) 

 
we can numerically determine the second and higher derivatives of  the dependent variable by 
successively differentiating both sides of this equation using the product rule and the general 
formula provided in equation (61). 

Section 6 describes an exact computational method for calculating the various derivative of a 
product of two or more expressions using the Multinomial Expansion Theorem without resorting to  
any type of  symbolic algebraic manipulation. 

Our system of nonlinear simultaneous equations of interest to solve for is obtained by first taking 
the various derivatives of equation (58) that represents the ODE in complete multivariate 
polynomial form.   This would include the various derivatives of each auxiliary variable that define 
the  Multivariate Polynomial Transform of the single external input as provided in equations (37) 
through (40)  which are  "W2"  and  "Wp+1". 

Next, we replace the various derivatives of the dependent variable in equation (58) with the 
computed values obtained  from the various derivatives of our  IAMPT  using equations (61)  and  
(62). 

The resultant nonlinear simultaneous equations can then be numerically solved for using various 
optimization technics where our objective function to be minimized would be represented as the 
sum of the squares of each of the various derivatives of equation (58): 

𝐺𝑛  =  
𝑑𝑛

𝑑𝑥𝑛
[𝑊2

𝑑2𝑌

𝑑𝑋2
   −    (

𝑑𝑌

𝑑𝑋
)
2

 {1  −   
𝑑𝑌

𝑑𝑋
(

2𝑊𝑝+1

1 + 𝑊𝑝+1
2 )  −   𝑊2

𝑑𝑌

𝑑𝑋
(
1 − 𝑊𝑝+1

2

1 + 𝑊𝑝+1
2 )}]   

 

(63) 

Our main objective function to  minimize would thus be represented as: 

 𝐹 =   ∑𝐺𝑛
2

𝑛

   (64) 

 

 



 

By succeeding in completely minimizing the above objective function to zero, the corresponding 
inverse Multivariate Polynomial Transform  would define an exact analytical solution of the  ODE  
that would satisfy a completely random set of  initial conditions.  Such a type of analytical solution  
obtained was earlier described as an instance solution.  Any numerical solution set that would 
depart from this minima would represent only an approximation of the actual exact analytical 
solution of the  ODE.  The further away we are from this minima, the greater will be the error of 
approximation between the exact analytical solution and the one arrived at. 

As we are only interested in obtaining as many exact instance solutions as possible each satisfying 
their own very unique initial conditions when  solving for these nonlinear simultaneous equations, 
we must treat all initial values of the auxiliary variables as unknown coefficients to solve for in 
order to achieve the highest numerical solution set rate possible.  It is the initial values of each 
auxiliary variable defined from the exact integration of a Secondary Expansion that when 
substituted into the Primary Expansion would completely define the initial conditions of a  DE or a 
system of  DEs.   Keep in mind that our primary objective in this type of analysis is to acquire as 
many instance solutions as possible so that by applying a unique method of conjecture, we would 
be able to arrive at a more  generalized version of the closed form solution satisfying a  DE or a 
system of  DEs. 

For solving these nonlinear simultaneous equations using an optimization technic,  all gradient 
calculations can become fairly complex quite often leading to very unpredictable results.  A 
preferred method of optimization that generally does not require any type of gradient calculations is 
the pattern search method as described in the book by  [Adby and Dempster 1974]. 

All calculations involving very high order partial derivatives of an IAMPT require a great deal 
amount of precision and thus not recommended to be performed on a regular PC.  Instead, the entire 
computational process would become more manageable if it were conducted on a very advanced 
super computer system.  

Future generations of computer hardware may begin to take full advantage of the multistate 
quantum bit (or Qubit) technology originating from the principles of quantum physics as they are 
expected to become much more powerful than the conventional types that operate only on the 
principle of two states being a 0 or 1.  Over time the semi conductor industry that currently powers 
our conventional computers will eventually reach its own physical limitations in terms of its ability 
for designing super fast switching devices.  Some estimate that because of the multi state capability 
of a Qubit, it would succeed in outperforming even the most powerful conventional super computer 
of our time in the billion-fold under the most demanding condition of computational requirements. 

Upon the gathering of as many numerical solution sets of the nonlinear simultaneous equations as 
possible, the next step to follow afterwards is in the complete construction of an NCSA  table that 
would be very specific to the  particular DE  or system of  DEs  being solved for. 

For solving our second order ODE, we were able to acquire a large number of instance solutions 
each satisfying its own very unique set of initial conditions that would also become the initial 
conditions of the ODE as well.   The greater the number of instance solutions that can be gathered 
and fully documented accordingly, the greater is the amount of information that can be made 
available for facilitating the entire process of deducing by conjecture the complete general exact 
analytical solution of the second order  ODE.  

 

 

 

 

 

 



 

 

The  NCSA  table for our example of  a second order  ODE  would therefore appear as follow: 

 

𝑦
𝑑2𝑦

𝑑𝑥2
    −    (

𝑑𝑦

𝑑𝑥
)
2

 {1  −   
𝑑𝑦

𝑑𝑥
𝑆𝑖𝑛(𝑦)   −    𝑦

𝑑𝑦

𝑑𝑥
𝐶𝑜𝑠(𝑦)}   =    0 

 

 

Initial                                     Coefficient                       Exact analytical solution 

Conditions                              Values                             obtained using the Multivariate         

                                                                                        Polynomial Transform method 

 

x0    = −1.28                               N/A                             𝐶𝑜𝑠(𝑦)  +   𝑥 +   1.662  −  0.778 𝑙𝑛(𝑦)  
y0    =  1.591                                                                

x0    =  0.2473                             N/A                            𝐶𝑜𝑠(𝑦)  +   𝑥  −  0.111   +   3.138 𝑙𝑛(𝑦)  
y0    =  0.76                                      

x0    =  −3.2542                          N/A                           𝐶𝑜𝑠(𝑦) +   𝑥  +  2.662   +  1.267 𝑙𝑛(𝑦)  
y0    =  1.442                                      

x0    =  1.2223                              N/A                           𝐶𝑜𝑠(𝑦)  +   𝑥  +  0.579   −  0.778 𝑙𝑛(𝑦)  
y0    =  3.865                                    

x0    =  −0.837                             N/A                           𝐶𝑜𝑠(𝑦)  +   𝑥  −  1.051   +  2.817 𝑙𝑛(𝑦)  
y0    =  2.691                                    

x0    =  −1.668                             N/A                           𝐶𝑜𝑠(𝑦)  +   𝑥  −  0.871   +  4.511 𝑙𝑛(𝑦)  
y0    =  1.877                                     
 

Table 4.1 

 

Based entirely on the information provided in this table and following the same basic procedure as 
was done in our first example for a first order ODE, a plausible conjecture for the exact analytical 
solution of this second order  ODE  satisfying all initial conditions would be:   

𝑓(𝑥, 𝑦)   =   0  =   𝐶𝑜𝑠(𝑦)   +   𝑥  +   𝐴1    +  𝐴2 𝑙𝑛(𝑦)  (65) 

where  "A1 "  and  "A1"  are each defined as a constant of integration. 

 

 

 

 



 

5.  Complete numerical example for a second order  PDE 

For PDEs and for systems of  ODEs as well as for system of  PDEs,  the  NCSA  table is always 
constructed in pretty much the same way as we did for the first order ODE described in the first 
example.  In all cases involved, we always allow for the initial conditions of a DEs or a system of  
DEs  to become part of the unknown coefficients to solve for as originally defined from within an  
IAMPT. 

In the following example, we have randomly selected a second order  PDE and provided a complete 
step by step process for arriving at its complete exact analytical solution satisfying all initial 
conditions. 

Example (5.1). For the following second order PDE : 

𝑥2 (
𝜕2𝑧

𝜕𝑥1𝜕𝑥2
)  −   

𝜕𝑧

𝜕𝑥1
    −  𝑥1𝑥2

2𝑆𝑖𝑛(𝑥1𝑥2)   =   0 (66) 

there is only one external input that is defined in terms of the  Sine  function.   

As we did in our previous example for a second order ODE, we can use the following trigonometric 

identity for expressing the  Sine  function as a rational combination of the tangent function: 

 

𝑓(𝑥1, 𝑥2)  =   𝑆𝑖𝑛(𝑥1𝑥2)  =   
2𝑇𝑎𝑛(𝑥1𝑥2/2)

1  +    𝑇𝑎𝑛2(𝑥1𝑥2/2)
  (67) 

Based on the use of this half angle formula for the Tangent function, we begin by selecting a much 
simpler alternative representation for the  Sine  function by defining: 

𝐻(𝑥1, 𝑥2)  =    𝑊𝑝+1   =    𝑇𝑎𝑛(𝑥1𝑥2/2)  =   𝑇𝑎𝑛(𝑊2𝑊3/2) (68) 

where  "𝑝"  is the total number of arbitrarily defined auxiliary variables from the  IAMPT  that will 
be selected for solving this second order  PDE. 

For this choice of auxiliary variable the corresponding Multivariate Polynomial Transform would 
be defined  as follow: 

(1).  Primary Expansion: 

         𝐻(𝑊𝑝+1)  =   𝑊𝑝+1 

 

(69) 

(2).  Secondary Expansion: 

         0 ∙ 𝑑𝑧  +    (1 + 𝑊𝑝+1
2 )𝑊3𝑑𝑥1   +   (1 + 𝑊𝑝+1

2 )𝑊2𝑑𝑥2  =    2𝑑𝑊𝑝+1  (70) 

 

where we have selected: 

       𝑊1  =   𝑧 
(71) 

       𝑊2  =   𝑥1 
(72) 

and: 

       𝑊3  =   𝑥2 (73) 

 



 

We can arbitrarily select our  IAMPT  as consisting of a maximum of  eight arbitrarily defined 
auxiliary variables so that   "𝑝 = 8".   There will be a total number of  eight  terms  in the Primary 
Expansion so that  "𝑢𝑃 = 8"  and  a total number of  four terms in the Secondary Expansion  so that  
"𝑢𝑆 = 4".  Because there is only one external input in the form of the  Tangent  function for 
representing only the Sine function, "𝑞 = 1"  thereby bringing the total number of auxiliary 
variables in the entire initially assumed expansion to  nine.  

For this selection of parameters, the corresponding  IAMPT for solving this second order  PDE  can 
be expanded as: 

 (1).  Primary Expansion: 

         𝐹 =   0  =    𝑎1𝑊1
𝑚1𝑊2

𝑚2 ∙∙∙ 𝑊9
𝑚9  +     𝑎2𝑊1

𝑚10𝑊2
𝑚11 ∙∙∙ 𝑊9

𝑚18   +  … +     

                                                                                               + … +    𝑎8𝑊1
𝑚64𝑊2

𝑚65 ∙∙∙ 𝑊9
𝑚72   

 

(74) 

(2).  Secondary Expansion: 

        𝑑𝑧   =   𝑑𝑊1 (75) 

        𝑑𝑥1  =   𝑑𝑊2 (76) 

        𝑑𝑥2  =   𝑑𝑊3 (77) 

        𝑁1𝑑𝑧    +    𝑁2𝑑𝑥1     +    𝑁3𝑑𝑥2    =   𝑁4𝑑𝑊4 (78) 

        𝑁5𝑑𝑧    +   𝑁6𝑑𝑥1     +    𝑁7𝑑𝑥2    =   𝑁8𝑑𝑊5 (79) 

        𝑁9𝑑𝑧    +   𝑁10𝑑𝑥1   +    𝑁11𝑑𝑥2   =   𝑁12𝑑𝑊6 (80) 

        𝑁13𝑑𝑧   +    𝑁14𝑑𝑥1   +   𝑁15𝑑𝑥2  =   𝑁16𝑑𝑊7 (81) 

        𝑁17𝑑𝑧   +    𝑁18𝑑𝑥1   +   𝑁19𝑑𝑥2  =   𝑁20𝑑𝑊8 (82) 

        𝑁21𝑑𝑧   +   𝑁22𝑑𝑥1   +    𝑁23𝑑𝑥2  =   𝑁24𝑑𝑊9 (83) 

where : 

          𝑁1   =    𝑏1𝑊1
𝑚1𝑊2

𝑚2 ∙∙∙ 𝑊9
𝑚9     + … +    𝑏4𝑊1

𝑚28𝑊2
𝑚29 ∙∙∙ 𝑊9

𝑚36   (84) 

  

          𝑁2   =    𝑏5𝑊1
𝑚37𝑊2

𝑚38 ∙∙∙ 𝑊9
𝑚45   +  … +    𝑏8𝑊1

𝑚64𝑊2
𝑚65 ∙∙∙ 𝑊9

𝑚72 (85) 

                    .                                                .                                                      . 

                    .                                                .                                                      . 

                    .                                                .                                                      . 

          𝑁20   =    𝑏77𝑊1
𝑚685𝑊2

𝑚686 ∙∙∙ 𝑊9
𝑚693   +  … +    𝑏80𝑊1

𝑚712𝑊2
𝑚713 ∙∙∙ 𝑊9

𝑚720   
 

(86) 

 
To account for the presence of the Sine function inside the PDE we must define the 
following  three multivariate polynomials with  known  coefficient values: 

 
 
 

 



 

N21  =   0  (87) 

N22  =   (1 + Wp+1
2 )𝑊3  =   (1 + W9

2)𝑊3  (88) 

N23  =   (1 + Wp+1
2 )𝑊2  =   (1 + W9

2)𝑊2   (89) 

and : 
 
N24  =   2 (90) 

We can compute the total number of unknowns to solve for  in our  IAMPT  using the following 

general  formula with  "𝑛 = 2",  "𝑝 = 8",  "𝑢𝑃 = 8",  "𝑢𝑠 = 4"  and   "𝑞 = 1"  : 

                         𝑁𝑇𝑜𝑡𝑎𝑙  =   𝑁𝑃𝑟𝑖𝑚𝑎𝑟𝑦  +   𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦   (91) 

                      =   𝑢𝑃(𝑝 + 𝑞 + 1)    +    𝑢𝑆(𝑝 + 𝑞 + 1)(𝑛 + 2)(𝑝 − 𝑛 − 1)   (92) 

              =   8(8 + 1 + 1)  +   4(8 + 1 + 1)(2 + 2)(8 − 2 − 1)   (93) 

             =   8(10)   +   4(10)(4)(5)  =  80  +    800  =   880   (94) 

As in the case for the second order ODE,  the entire PDE may be expressed in terms of the 
following single large multivariate polynomial by taking its complete Multivariate Polynomial 
Transform using equations (68) through (73): 
 

𝑊3 (
𝜕2𝑍

𝜕𝑊2𝜕𝑊3

)  −    
𝜕𝑍

𝜕𝑊2

  −   2𝑊2𝑊3
2 (

𝑊𝑝+1

1 + 𝑊𝑝+1
2 )  =   0 

 

(95) 

where we have selected: 

𝑊1  =   𝑧 (96) 

𝑊2  =   𝑥1 (97) 

𝑊3  =   𝑥2 (98) 

 
and where capital letters are used to indicate that a transformation to complete multivariate 
polynomial form has taken place.  

A very general formula for calculating the first partial derivative of  our IAMPT that is based on the 
use of the product rule and the Multinomial Expansion Theorem can also be derived in a very 
similar manner as was done in our last example of a second order  ODE  which was provided in  
equation (61).  

Our system of nonlinear simultaneous equations of interest to solve for is obtained by first taking 
the various partial derivatives of equation (95) that represents the PDE in complete multivariate 
polynomial form.   This would include the various partial derivatives of each auxiliary variable that 
define the  Multivariate Polynomial Transform of the single external input as provided in equations 
(68) through (73)  which are  "W2", "W3"  and  "Wp+1". 

Next, we replace the various partial derivatives of the dependent variable in equation (95) with the 
computed values obtained  from the various partial derivatives of our  IAMPT. 

The resultant nonlinear simultaneous equations can then be numerically solved for using various 
optimization technics where our objective function to be minimized would be represented as the 
sum of the squares of each of the various partial derivatives of equation (95): 



 

𝐺𝑖  =   
𝜕𝑚1

𝜕𝑊2
𝑚1

  
𝜕𝑚2

𝜕𝑊3
𝑚2

 
𝜕𝑚3

𝜕𝑊4
𝑚3

  …   
𝜕𝑚𝑘

𝜕𝑊𝑝+1

𝑚𝑘
 … {𝑊3 (

𝜕2𝑍

𝜕𝑊2𝜕𝑊3

)  −    
𝜕𝑍

𝜕𝑊2

  −   2𝑊2𝑊3
2 (

𝑊𝑝+1

1 + 𝑊𝑝+1
2 )}  =   0 

 

(99) 

Our main objective function to  minimize would  therefore  be represented as: 

 𝐹 =   ∑𝐺𝑖
2

𝑖

   (100) 

By succeeding in completely minimizing the above objective function to zero, the corresponding 
inverse Multivariate Polynomial Transform  would define an exact analytical solution of the  PDE  
that would satisfy a completely random set of  initial conditions.  Such a type of analytical solution  
obtained was earlier described as an instance solution.  Any numerical solution set that would 
depart from this minima would represent only an approximation of the actual exact analytical 
solution of the  PDE.  The further away we are from this minima, the greater will be the error of 
approximation between the exact analytical solution and the one arrived at. 

As we are only interested in obtaining as many exact instance solutions as possible each satisfying 
their own very unique initial conditions when  solving for these nonlinear simultaneous equations, 
we must treat all initial values of the auxiliary variables as unknown coefficients to solve for in 
order to achieve the highest numerical solution set rate possible.  It is the initial values of each 
auxiliary variable defined from the exact integration of a Secondary Expansion that when 
substituted into the Primary Expansion would completely define the initial conditions of a  DE or a 
system of  DEs.   Keep in mind that our primary objective in this type of analysis is to acquire as 
many instance  solutions as possible so that by applying a unique method of conjecture, we would 
be able to arrive at a more  generalized version of the closed form solution satisfying a  DE or a 
system of  DEs. 

For solving these nonlinear simultaneous equations using an optimization technic,  all gradient 
calculations can become fairly complex quite often leading to very unpredictable results.  A 
preferred method of optimization that generally does not require any type of gradient calculations is 
the pattern search method as described in the book by  [Adby and Dempster 1974]. 

All calculations involving very high order partial derivatives of an IAMPT require a great deal 
amount of precision and thus not recommended to be performed on a regular PC.  Instead, the entire 
computational process would become more manageable if it were conducted on a very advanced 
super computer system.  

Upon the gathering of as many numerical solution sets of the nonlinear simultaneous equations as 
possible, the next step to follow afterwards is in the complete construction of an NCSA  table that 
would be very specific to the particular DE  or system of  DEs  being solved for. 

For solving our second order PDE, we were able to acquire a large number of instance solutions 
each satisfying its own very unique set of initial conditions that would also become the initial 
conditions of the  PDE as well.   The greater the number of instance solutions that can be gathered 
and fully documented accordingly, the greater is the amount of information that can be made 
available for facilitating the entire process of deducing by conjecture the complete general exact 
analytical solution of the second order  PDE.  

 

 

 

 

 



 

The NCSA table for our example of  a second order  PDE  would therefore appear as follow: 

𝑥2 (
𝜕2𝑧

𝜕𝑥1𝜕𝑥2
)  −   

𝜕𝑧

𝜕𝑥1
    −   𝑥1𝑥2

2𝑆𝑖𝑛(𝑥1𝑥2)   =   0 

 
Initial                       Coefficient                               Exact analytical solution obtained using the  

Conditions               Values                                      Multivariate  Polynomial Transform method       

                                                                                          

 𝑥01   =  3.61                    𝑁/𝐴                                        2𝑥2𝑥1
1.68   +   𝑆𝑖𝑛(ln[𝑥2

−1.6] + 𝑥2
0.78)  −   𝑆𝑖𝑛(𝑥1𝑥2)  −   𝑧   =   0 

 𝑥02   =  1.771                                                                                           
                                                                                                   

 𝑥01   =   1.29                   𝑁/𝐴                    𝑥2 √𝑥1
0.23 + 1.78

6
  +  1.22 ln (√𝑥2

2 + 1 + 3.5 ) −  𝑆𝑖𝑛(𝑥1𝑥2)  −   𝑧   =   0 

 𝑥02   =  −1.88             
 

 𝑥01   =   3.555                𝑁/𝐴                  0.56𝑥2𝑒
𝑥1

−0.46
−  4.6𝑇𝑎𝑛(𝑥2

1.86 + √𝑥2
1.1 − 6.1

4
)   −   𝑆𝑖𝑛(𝑥1𝑥2)  −   𝑧   =   0 

 𝑥02   =   2.76                                                                                           
                                                                                         

 𝑥01   =  −0.723              𝑁/𝐴                                 3.06𝑥2𝑆𝑖𝑛ℎ(𝑥1
2)   −  2.45𝑥2

1.46√𝑥2
3.1−2.3

−   𝑆𝑖𝑛(𝑥1𝑥2)   −   𝑧   =   0 

 𝑥02   =   1.58             
                             

Table 5.1 
 

Based entirely on the information provided in the above table, there appears to be no obvious 
patterns by which a plausible conjecture for the exact analytical solution of this second order PDE  
satisfying all initial conditions can be made.   

The main reason for this is that the exact analytical solution consists of a number of expressions that 
are completely arbitrarily defined.  This would call for the development of a very sophisticated 
method of comparison analysis just for identifying those arbitrary expressions that are present in all 
of the instance solutions obtained.  Some of these arbitrarily defined expressions may be easier to 
detect than others for establishing a plausible conjecture by which a complete  analytical solution of 
the  PDE  satisfying all initial conditions may be arrived at. 

In the final analysis, all results would be pointing towards the following expression as representing 
the complete exact analytical solution of the  PDE  satisfying all initial conditions:  
 

𝑓(𝑧, 𝑥1, 𝑥2) =   0 =   𝑥2𝜑1(𝑥1)   +   𝜑2(𝑥2)  −   𝑆𝑖𝑛(𝑥1𝑥2)  −   𝑧     (101) 

where upon conducting such a type of special method of comparison analysis, each of the 
expression for  "𝜑1(𝑥1) "  and  "𝜑2(𝑥2)"  would eventually have been singled out in the end as 
completely arbitrarily defined. 

Once again it is very important to mention that without having constructed the  NCSA  table it 
would have been virtually impossible to have correctly arrived at the complete  general analytical 
solution of this second order  PDE  satisfying all initial conditions.    
 



 

6.  Exact computational method  for calculating the various derivatives and partial derivatives 
     of  an  initially assumed  Multivariate Polynomial Transform (IAMPT) 

The method of substituting an  IAMPT  into a DE or a system of  DEs for defining a valid system of  
nonlinear simultaneous equations to solve for requires that the numerical values of each of the 
various derivatives of the DE or system of  DEs become equal to that of an IAMPT.  An alternative 
method is to substitute an  IAMPT  into a DE or a system of  DEs and afterwards equating like 
multivariate polynomial terms to zero.  However, this would result into defining a completely 
invalid system of  nonlinear simultaneous equations to solve for as it would automatically impose a 
major restriction on each auxiliary variable for becoming totally independent from one another.  
The evidence is clearly provided in  Appendix A  where as you will notice that for the vast majority 
of  the cases involved, it is always necessary to maintain a certain degree of dependency among 
auxiliary variables especially when very complex mathematical equations are involved. 

The actual process of computing the  exact  values for the various derivatives and partial derivatives 
of an IAMPT to any desirable order of differentiation without any loss of accuracy whatsoever can 
always be reduced at a computational level.  The reason for this is that we take full advantage of a 
well known fact in numerical analysis that taking the various derivatives of a product of several 
expressions is very much similar to  algebraically expanding to some exponent value the sum of 
several terms.  The only major difference between the two is that in the case of differentiation, 
exponentiation becomes treated purely as an order of differentiation while all the remaining 
algebraic operations remain completely identical.   

 
For the simple case of differentiating a product involving only two expressions, this would require  
the use of the  Binomial Expansion Theorem  which is defined by: 

𝑑𝑛

𝑑𝑥𝑛
 𝑓𝑔  =  ∑ (

𝑛

𝑘
) 𝑓(𝑘)𝑔(𝑛−𝑘)

𝑛

𝑘=0

 (102) 

where: 

(
𝑛

𝑘
)  =  𝐵𝑛,𝑘 =  

𝑛!

𝑘! (𝑛 − 𝑘)!
   (103) 

are the binomial coefficients and where it is to be clearly understood that all exponent values are to 

be treated purely as order of differentiation. 

In complete expanded form, the various derivatives of a product consisting of two expressions can 
be symbolically defined as : 

[𝑓 + 𝑔](𝑛)  =   𝑓(0)𝑔(𝑛)  +   𝐵𝑛−1,1𝑓
(1)𝑔(𝑛−1)  +   𝐵𝑛−2,2𝑓

(2)𝑔(𝑛−2)   + … +  𝑓(𝑛)𝑔(0) (104) 

where the product is being substituted by the sum inside a square bracket and  "n"  is the order of 
differentiation. 

When a product always involves more than two expressions, we can instead replace the  Binomial 
Expansion Theorem  with the following  Multinomial Expansion Theorem: 
 

(𝑎1  +  𝑎2  + ⋯+  𝑎𝑘)
𝑛  =  ∑

𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!
𝑛1,𝑛2,…,𝑛𝑘≥0

𝑛1+𝑛2+⋯+𝑛𝑘=𝑛

  𝑎1
(𝑛1)

 𝑎2
(𝑛2)

 ∙∙∙  𝑎𝑘
(𝑛𝑘)

   (105) 

where  𝑛 =  𝑛1  +   𝑛2  +  … +  𝑛𝑘 

 



 

For determining the various derivatives of a product involving any number of  expressions and in 
accordance  to our previously defined notation we can define: 

𝑑𝑛

𝑑𝑥𝑛
(𝑓1𝑓2 ∙∙∙ 𝑓𝑘)   =   [𝑓1  +   𝑓2  + ⋯+  𝑓𝑘]

(𝑛)                   (106) 

  

                                                            =  ∑
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!
𝑛1,𝑛2,…,𝑛𝑘≥0

𝑛1+𝑛2+⋯+𝑛𝑘=𝑛

  𝑓1
(𝑛1)

 𝑓2
(𝑛2)

 ∙∙∙  𝑓𝑘
(𝑛𝑘)

   (107) 

where the square bracket is used to symbolize differentiation with all exponents treated as order of 
differentiation. 

 

Example (6.1).  To test the validity of our symbolic notation, let us consider the simple two 
dimensional case for calculating the various derivatives up to the 5

th
 order  at  "x = 2"  for the 

following equation: 

𝑦 =   𝑒2𝑥  =  𝑒−𝑥𝑒0.5𝑥𝑒2.5𝑥 (108) 

  

Here we can start by letting: 

 

 f1 = e−x,    f2 = e0.5x  and    f3 = e2.5x   (109) 

so that each of their various derivatives up to  5  may be defined as: 

𝑓1
(0)

= e−x,   𝑓2
(0)

= e0.5x    and    𝑓3
(0)

= e2.5x    (110) 

𝑓1
(1)

= −e−x,   𝑓2
(1)

= 0.5e0.5x   and    𝑓3
(1)

= 2.5e2.5x    (111) 

𝑓1
(2)

= e−x,    𝑓2
(2)

= 0.25e0.5x   and    𝑓3
(2)

= 6.25e2.5x    (112) 

𝑓1
(3)

= −e−x,   𝑓2
(3)

= 0.125e0.5x  and    𝑓3
(3)

= 15.625e2.5x    (113) 

𝑓1
(4)

= e−x,   𝑓2
(4)

= 0.0625e0.5x   and    𝑓3
(4)

= 39.0625e2.5x    (114) 

𝑓1
(5)

= −e−x,   𝑓2
(5)

= 0.03125e0.5x   and    𝑓3
(5)

= 97.65625e2.5x    (115) 

At  "x = 0.5"  we thus have: 

𝑓1
(0)

= e−0.5 = 0.607,   𝑓2
(0)

= e0.25 = 1.284   and    𝑓3
(0)

= e1.25 = 3.490  (116) 

𝑓1
(1)

= −e−0.5 = −0.607,   𝑓2
(1)

= 0.5e0.25 = 0.642   and    𝑓3
(1)

=  2.5e1.25 = 8.726    (117) 

𝑓1
(2)

= e−0.5 = 0.607,    𝑓2
(2)

= 0.25e0.25 = 0.321   and    𝑓3
(2)

= 6.25e1.25 = 21.815   (118) 

𝑓1
(3)

= −e−0.5 = −0.607,   𝑓2
(3)

= 0.125e0.25 = 0.161  and    𝑓3
(3)

= 15.625e1.25 =  54.537    (119) 

𝑓1
(4)

= e−0.5 = 0.607,   𝑓2
(4)

= 0.0625e0.25 = 0.080  and    𝑓3
(4)

=  39.0625e1.25 = 136.342   (120) 

𝑓1
(5)

= −e−0.5 = −0.607,   𝑓2
(5)

= 0.03125e0.25 = 0.040  and    𝑓3
(5)

= 97.65625e1.25 = 340.854    (121) 



 

Applying the Multinomial Expansion Theorem on these three individual components, we arrive at: 

𝑑5𝑦

𝑑𝑥5
  =   [𝑓1  +   𝑓2  + 𝑓3]

(5)   =  ∑
𝑛!

𝑛1! 𝑛2! 𝑛3!𝑛1,𝑛2,𝑛3≥0
𝑛1+𝑛2+𝑛3=5

  𝑓1
(𝑛1)

  𝑓2
(𝑛2)

 𝑓3
(𝑛3)

               

 

(122) 

=      (1)(-0.607)(1.284)(3.490)  +  (5)(0.607)(0.642)(3.490)  +  (10)(-0.607)(0.321)(3.490)  +  (10)(0.607)(0.161)(3.490)  +   

        (5)(-0.607)(0.080)(3.490)  +  (1)(0.607)(0.040)(3.490)  +  (5)(0.607)(1.284)(8.726)  +  (20)(-0.607)(0.642)(8.726)  +   

        (30)(0.607)(0.321)(8.726)  +  (20)(-0.607)(0.161)(8.726)  +  (5)(0.607)(0.080)(8.726)  +  (10)(-0.607)(1.284)(21.815)  +   

        (30)(0.607)(0.642)(21.815)  +  (30)(-0.607)(0.321)(21.815)  +  (10)(0.607)(0.161)(21.815)  +  (10)(0.607)(1.284)(54.537)  +   

        (20)(-0.607)(0.642)(54.537)  +  (10)(0.607)(0.321)(54.537)  +  (5)(-0.607)(1.284)(136.342)  +  (5)(0.607)(0.642)(136.342)  +   

       (1)(0.607)(1.284)(340.854)   (123) 

where there are a total number of  21  terms satisfying the criteria  that   "𝑛1, 𝑛2, 𝑛3 ≥ 0"   and  

 "𝑛1 + 𝑛2 + 𝑛3 = 5". 

 

We can define the  multinomial coefficient vector  has having a total number of  21 elements and 
these are: 

𝐶𝑀 =  [ 1, 5, 10, 10, 5, 1, 5, 20, 30, 20, 5, 10, 30, 30, 10, 10, 20, 10, 5, 5, 1 ] (124) 

We can also define the  multinomial exponent vector  as also consisting of  21 elements and they 

are:  

𝐸𝑀 = [500, 410, 320, 230, 140, 050, 401, 311, 221, 131, 041, 302, 212, 122, 032, 203, 113, 023, 104, 014, 005] (125) 

By writing a short computer program for performing the arithmetical operation in equation (123) 
using equation (122) but with higher precision, the value obtained based on  the  Multinomial 
Expansion Theorem  was determined as   "𝟖𝟔. 𝟗𝟖𝟓𝟎𝟏𝟗". 

The 5
th

 derivative of   "𝑒2𝑥"  is   "25𝑒2𝑥"  so that at  "x = 0.5"  this value becomes  32𝑒2(0.5) =
32𝑒 =   𝟖𝟔. 𝟗𝟖𝟓𝟎 1851  which is roughly the same value as the one computed using the  
Multinomial Expansion Theorem  in equation (123). 
 

For calculating the various partial derivatives with respect to any number of independent 
variables involving any number of products of multivariate expressions, the Multinomial Expansion 
Theorem  is still applicable but with some minor modifications of the general formula that was 
derived for the  two dimensional case. 

The various partial derivatives of a product of several multivariate expressions may be written in a 
more general form as: 
 

𝜕𝑚1

𝜕𝑥1
𝑚1

  
𝜕𝑚2

𝜕𝑥2
𝑚2

 
𝜕𝑚3

𝜕𝑥3
𝑚3

  …   
𝜕𝑚𝑘

𝜕𝑥𝑗
𝑚𝑘

 [𝑓1(𝑥1, 𝑥2, … ,   𝑥𝑗) ∙  𝑓2(𝑥1, 𝑥2, … ,   𝑥𝑗) ∙∙∙ 𝑓𝑖(𝑥1, 𝑥2, … ,   𝑥𝑗)]   
 
(126) 

  

which can symbolically be expanded as: 

 

 



 

[ 𝑓1
(0)

+ 𝑓2
(0)

+ …+ 𝑓𝑖
(0)

 ]
1(𝑚1)

𝑚1
  ∆    [ 𝑓1

(0)
+ 𝑓2

(0)
+ …+ 𝑓𝑖

(0)
 ]

2(𝑚2)

𝑚2
        ∆   ∙∙∙   ∆   

                                                                                             ∆   ∙∙∙   ∆       [ 𝑓1
(0)

+ 𝑓2
(0)

+ …+ 𝑓𝑖
(0)

]
𝑗(𝑚𝑘)

𝑚𝑘
 (127) 

where  "∆"    is a special operator that is used to mimic the process of algebraically expanding  term 
by term  the product of two or more expressions with the only exception that all exponents are to  be 
treated as order of differentiation. 

In complete notational form using the Multinomial Expansion Theorem this may be rewritten as: 

[
 
 
 

 ∑
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!
 

𝑛1,𝑛2,…,𝑛𝑖≥0
𝑛1+𝑛2+⋯+𝑛𝑖=𝑚1

  𝑓1,1(𝑛1)
(𝑛1)

 𝑓2,1(𝑛2)
(𝑛2)

 ∙∙∙  𝑓𝑖,1(𝑛𝑖)
(𝑛𝑖)

]
 
 
 

  ∆    

 

                   

[
 
 
 

 ∑
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!
 

𝑛1,𝑛2,…,𝑛𝑖≥0
𝑛1+𝑛2+⋯+𝑛𝑖=𝑚2

  𝑓1,2(𝑛1)
(𝑛1)

 𝑓2,2(𝑛2)
(𝑛2)

 ∙∙∙  𝑓𝑖,2(𝑛𝑖)
(𝑛𝑖)

]
 
 
 

           ∆   ∙∙∙   ∆   

 

     

[
 
 
 

 ∑
𝑛!

𝑛1! 𝑛2! ∙∙∙ 𝑛𝑘!
 

𝑛1,𝑛2,…,𝑛𝑖≥0
𝑛1+𝑛2+⋯+𝑛𝑖=𝑚𝑘

  𝑓1,𝑗(𝑛1)
(𝑛1)

 𝑓2,𝑗(𝑛2)
(𝑛2)

 ∙∙∙  𝑓𝑖,𝑗(𝑛𝑖)
(𝑛𝑖)

]
 
 
 

 

 
 
 
 
 
(128) 

 

When expanding the various partial derivatives of a product of several multivariate expressions 
using the above notational form, it is very important to insure that  "all" the multivariate 
expressions present in "each product" are also "all"  present in "each term"  of  the resultant 
expansion. 

 

Example (6.2).  Based entirely on our  standard  notation for representing the various partial 

derivatives of a  product of  several multivariate expressions,  we will determine  " 
𝜕𝑓1𝑓2

𝜕𝑥1𝜕𝑥2
2"  where  

"𝑓1"  and  "𝑓2"   are each defined as  arbitrary multivariate function. 

 

𝜕3𝑓1𝑓2

𝜕𝑥1𝜕𝑥2
2   =   [𝑓1 + 𝑓2]1(1)

(1)
  ∆   [𝑓1 + 𝑓2]2(2)

(2)
  (129) 

 

                 =    [𝑓1,1(1)
(1)

 +   𝑓2,1(1)
(1)

]  ∆  [𝑓1,2(2)
(2)

 +   2𝑓1,2(1)
(1)

𝑓2,2(1)
(1)

+  𝑓2.2(2)
(2)

]     (130) 

 

 
 
 



 

Algebraically performing a term by term symbolic multiplication by treating all exponent values as 
order of differentiation, we obtain: 

 

                 =    𝑓1,1(1)
(1)

𝑓1,2(2)
(2)

 +   2𝑓1,1(1)
(1)

𝑓1,2(1)
(1)

𝑓2,2(1)
(1)

 +   𝑓1,1(1)
(1)

𝑓2,2(2)
(2)

 +     

                                                                +    𝑓2,1(1)
(1)

𝑓1,2(2)
(2)

 +   2𝑓2,1(1)
(1)

𝑓1,2(1)
(1)

𝑓2,2(1)
(1)

+ 𝑓2,1(1)
(1)

𝑓2,2(2)
(2)

 (131) 

 

which in the conventional symbolic form may be translated as: 
 

       =    
𝜕3𝑓1

𝜕𝑥1𝜕𝑥2
2   +   2

𝜕2𝑓1
𝜕𝑥1𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥2

  +    
𝜕𝑓1
𝜕𝑥1

𝜕2𝑓2

𝜕𝑥2
2   +    

𝜕2𝑓1

𝜕𝑥2
2

𝜕𝑓2

𝜕𝑥1

  +   2
𝜕𝑓1
𝜕𝑥2

 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2

  +   
𝜕3𝑓2

𝜕𝑥1𝜕𝑥2
2  (132) 

 

To insure that every term in the above expansion always contains the two functions that is being 
differentiated, we must  include  " 𝑓2"  and  "𝑓1"  in the first and last term of the expansion 
respectively.   

The final results are: 

                 =   
𝜕3𝑓1

𝜕𝑥1𝜕𝑥2
2 𝑓2   +  2

𝜕2𝑓1
𝜕𝑥1𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥2

  +    
𝜕𝑓1
𝜕𝑥1

 
𝜕2𝑓2

𝜕𝑥2
2   +    

𝜕2𝑓1

𝜕𝑥2
2

𝜕𝑓2

𝜕𝑥1

  +    2
𝜕𝑓1
𝜕𝑥2

 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2

 +   𝑓1
𝜕3𝑓2

𝜕𝑥1𝜕𝑥2
2 (133) 

 

We can validate the use of our symbolic notations by performing the same operation manually and 
compare the results with the one obtained in the above equation: 
 

 
 𝜕2𝑓1𝑓2

𝜕𝑥2
2   =   

𝜕

𝜕𝑥2

 (
𝜕𝑓1
𝜕𝑥2

𝑓2  +   𝑓1
𝜕𝑓2

𝜕𝑥2

)   =   
𝜕2𝑓1

𝜕𝑥2
2 𝑓2  +   2 

𝜕𝑓1
𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥2

 +   𝑓1
𝜕2𝑓2

𝜕𝑥2
2   

 
(134) 

𝜕3𝑓1𝑓2

𝜕𝑥1𝜕𝑥2
2  =  

𝜕

𝜕𝑥1

( 
𝜕2𝑓1𝑓2

𝜕𝑥2
2 )   =   

𝜕

𝜕𝑥1

(  
𝜕2𝑓1

𝜕𝑥2
2 𝑓2  +   2 

𝜕𝑓1
𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥2

 +   𝑓1
𝜕2𝑓2

𝜕𝑥2
2 ) 

 
(135) 

 

         =    
𝜕3𝑓1

𝜕𝑥1𝜕𝑥2
2 𝑓2   +   

𝜕2𝑓1

𝜕𝑥2
2

𝜕𝑓2

𝜕𝑥1

  +   2
𝜕2𝑓1

𝜕𝑥1𝜕𝑥2

 
𝜕𝑓2

𝜕𝑥2

 +   2
𝜕𝑓1
𝜕𝑥2

 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥2

   +  
𝜕𝑓1
𝜕𝑥1

 
𝜕2𝑓2

𝜕𝑥2
2  +   𝑓1

𝜕3𝑓2

𝜕𝑥1𝜕𝑥2
2  (136) 

 
 
As can be verified, the above expansion is exactly identical to the one in equation (133) thereby 
completely validating our standard use of special notations for taking the various partial derivatives 
of a product of several multivariate expressions.   

 
The greatest advantage for using this  notational convention is that it can reduce the entire process 
of determining the various partial derivatives of a product consisting of any number of expressions 
entirely on a  "computational level". 

In general, an IAMPT will always consist of multivariate polynomials as well as the differential of 
multivariate polynomials where each multivariate polynomial term will always be expressible as a 
product of several auxiliary variables.  For calculating the various derivatives and partial derivatives 
of an IAMPT would require that each of the products of several auxiliary variables be differentiated 
under the product rule.  So its therefore quite easy to visualize how the use of  the  Multinomial  
Expansion Theorem  would become a very valuable tool for computing the various derivatives and 
partial derivatives of an IAMPT  to any desirable degree of accuracy. 



 

The complete development of all the formulas related to the calculations of the various derivatives 
and partial derivatives of an  IAMPT  for solving all types of  DEs  and  systems of  DEs is of 
course much beyond the scope of this paper.  However, this can always be made available to 
anyone by special request provided you contact me at either one of the following email addresses  
michelmikalajunas@bellnet.ca   or  at   jpnelson_mfc@yahoo.ca .  
 

7.  General  closed form solutions of the  Navier-Stokes equations by method of conjecture     
     involving the use of computational differential analysis 

The Navier-Stokes equations is the direct application of  Newton's second law of motion for the 
complete analysis of  both compressible and  incompressible fluids. 

For the case of incompressible flow and assuming constant viscosity, the equations may be 
described as follow:    

                                    Inertia          =     Pressure      +      Viscosity     +       Other 
                                                                  gradient                                             forces 

                  𝜌 (
𝜕𝐯

𝜕𝑡
  +   𝐯 ∙ ∇𝐯)    =      −∇𝑃        +       𝜇∇2𝐯       +          𝐹 

(137) 

 

along with the mass continuity equation which states that: 

𝜕𝜌

𝜕𝑡
   +    ∇ ∙ (𝜌𝐯)    =    0 (138) 

 
Since we will restrict our analysis to  incompressible  flow only,  the density is always assumed 
constant so that  the above equation may be rewritten as: 
                                     

 ∇ ∙ 𝐯 =   0 (139) 

 
By assuming that gravitational forces are the only external forces present, the vector equations in 
Cartesian coordinates expand as follow:  

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
)   =   −

𝜕𝑃

𝜕𝑥
  +   𝜇 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2)   +   𝜌𝑔𝑥 

 

(140) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
)    =   −

𝜕𝑃

𝜕𝑦
  +   𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
)   +   𝜌𝑔𝑦 

 

(141) 

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
)   =   −

𝜕𝑃

𝜕𝑧
  +   𝜇 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 +
𝜕2𝑤

𝜕𝑧2 )  +   𝜌𝑔𝑧 (142) 

along with the mass continuity equation defined as: 

𝜕𝑢

𝜕𝑥
  +   

𝜕𝑣

𝜕𝑦
  +  

𝜕𝑤

𝜕𝑧
 =   0 (143) 

 

We would construct the  NCSA  table by defining the  variable coefficients as the fluid density "𝜌",  
the fluid dynamic viscosity  "𝜇"  and  the gravitational force components in the x, y and z direction.   
Since no external inputs are present in these equations other then the external forces due to  gravity 
then we can set  "q = 0"  in the  IAMPT  that will be selected for solving these vector equations. 
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In the Secondary Expansion of our IAMPT, the first set of auxiliary variables will be used for 
representing the dependent and independent variables in that order.  This will be followed by the 
remaining initially assumed auxiliary variables used for representing all basis functions in complete 
differential form that will be present in the exact analytical solution of  the system of  PDEs. 

Our IAMPT will be selected on the basis of solving the above system of  PDEs  in terms of a 
system of  implicitly defined equations that would consist only of the algebraic and elementary basis 
functions.  The various initial conditions possible for this type of  generalized flow are of course 
expected to be infinite.  So in order to maximize our numerical solution rate of the corresponding 
nonlinear simultaneous equations, we can  set all the coefficients defining the initial conditions in 
our  IAMPT  as part of the unknowns to solve for that would be represented by the initial values of 
each initially assumed auxiliary variable.  Other unknowns to solve for are the variable coefficients 
defined in our NCSA table as well as those present in both the Primary and Secondary Expansion 
of our  IAMPT. 

Over time, the NCSA table should eventually succeed in capturing from the numerical solution set 
of the  nonlinear simultaneous equations all those exact instance analytical solutions that would 
conform with experimental results obtained under controlled  laboratory conditions.  

It is only through the gathering of this type of information over a span of say many years or even 
many decades that a large number of generalized analytical solutions may potentially be uncovered.  
This would in the very long term enable us to acquire a far better understanding of general fluid 
behavior than having to depend entirely on the use of  laboratory experiments as a result of the non- 
integrability of many integrals that would  have originated from the use of conventional methods of 
pure mathematical analysis. 

 

In terms of  Cylindrical  coordinates this would be written as: 

𝜌 (
𝜕𝑢𝑟

𝜕𝑡
 + 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
 + 

𝑢𝜃

𝑟

𝜕𝑢𝑟

𝜕𝜃
 + 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
 − 

𝑢𝜃
2

𝑟
 )   =   −

𝜕𝑃

𝜕𝑟
   +  

                                                                                              𝜇 [(
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑟

𝜕𝑟
) + 

1

𝑟2
 
𝜕2𝑢𝑟

𝜕𝜃2
 +  

𝜕2𝑢𝑟

𝜕𝑧2
 −

 𝑢𝑟

𝑟2
 −  

2

𝑟2

𝜕𝑢𝜃

𝜕𝜃
)]     +    𝜌𝑔𝑟 (144) 

𝜌 (
𝜕𝑢𝜃

𝜕𝑡
 + 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
 + 

𝑢𝜃

𝑟

𝜕𝑢𝜃

𝜕𝜃
 +  𝑢𝑧

𝜕𝑢𝜃

𝜕𝑧
+ 

𝑢𝑟𝑢𝜃

𝑟
 )  =  −

1

𝑟

𝜕𝑃

𝜕𝜃
  +  

                                                                                                  𝜇 [(
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝜃

𝜕𝑟
)  +  

1

𝑟2
 
𝜕2𝑢𝜃

𝜕𝜃2
 +  

𝜕2𝑢𝜃

𝜕𝑧2
 −

 𝑢𝜃

𝑟2
+

2

𝑟2

𝜕𝑢𝑟

𝜕𝜃
)]   +    𝜌𝑔𝜃 (145) 

𝜌 (
𝜕𝑢𝑧

𝜕𝑡
 + 𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
 + 

𝑢𝜃

𝑟

𝜕𝑢𝑧

𝜕𝜃
 +  𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
)  =  −

𝜕𝑃

𝜕𝑧
  +   𝜇 [(

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑧

𝜕𝑟
) + 

1

𝑟2  
𝜕2𝑢𝑧

𝜕𝜃2  +  
𝜕2𝑢𝑧

𝜕𝑧2  )]    +   𝜌𝑔𝑧 
(146) 

along with the mass continuity equation defined as: 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟)   +  

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
  +  

𝜕𝑢𝑧

𝜕𝑧
  =   0 (147) 

 
 
Such a coordinate system may in some cases prove to be easier for the analysis of certain types of 
fluid motion that would mainly involve symmetry thereby allowing for the elimination of a velocity 
component.    
 
A very common case is axisymmetric flow where there is no tangential velocity (𝑢𝜃 = 0)  and the 
remaining quantities are independent of  θ: 

 



 

𝜌 (
𝜕𝑢𝑟

𝜕𝑡
 +  𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
 + 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
  )   =  −

𝜕𝑃

𝜕𝑟
  +   𝜇 [(

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑟

𝜕𝑟
) +  

𝜕2𝑢𝑟

𝜕𝑧2  −
 𝑢𝑟

𝑟2  )]    +   𝜌𝑔𝑟 (148) 

𝜌 (
𝜕𝑢𝑧

𝜕𝑡
 + 𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
 + 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
)  =  −

𝜕𝑃

𝜕𝑧
  +   𝜇 [(

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑧

𝜕𝑟
) + 

𝜕2𝑢𝑧

𝜕𝑧2  )]    +   𝜌𝑔𝑧 
(149) 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟)   +   

𝜕𝑢𝑧

𝜕𝑧
  =   0 (150) 

For this type of coordinate system we would proceed in constructing the  NCSA table in exactly the 
same manner as for the Cartesian coordinate system where in both cases there are no external 
inputs so that "q = 0".   This would also include managing in exactly the same manner all initial 
conditions and the variable coefficients defined by the fluid density "𝜌",  the fluid dynamic 
viscosity  "𝜇"  and  the gravitational components  in the x, y and z direction. 
 
 
In  terms of  Spherical  coordinates this would be written as: 

𝜌 (
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
 +   

𝑢𝜃

𝑟𝑆𝑖𝑛(∅)

𝜕𝑢𝑟

𝜕𝜃
 +   

𝑢∅

𝑟

𝜕𝑢𝑟

𝜕∅
 −  

𝑢𝜃
2+𝑢∅

2

𝑟
)   =    

𝜕𝑃

𝜕𝑟
 +   𝜌𝑔𝑟  +   

 +   𝜇 {
1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝑢𝑟

𝜕𝑟
) + 

1

𝑟2𝑆𝑖𝑛(∅)2
𝜕2𝑢𝑟

𝜕𝜃2   +   
1

𝑟2𝑆𝑖𝑛(∅)

𝜕

𝜕∅
(𝑆𝑖𝑛(∅)  

𝜕𝑢𝑟

𝜕∅
) − 2(

𝑢𝑟 + 
𝜕𝑢∅
𝜕∅

 + 𝑢∅𝐶𝑜𝑡(∅)

𝑟2 ) +
2

𝑟2𝑆𝑖𝑛(∅)

𝜕𝑢𝜃

𝜕𝜃
}  

 
 
(151) 

𝜌 {
𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
 +   

𝑢𝜃

𝑟𝑆𝑖𝑛(∅)

𝜕𝑢𝜃

𝜕𝜃
 +   

𝑢∅

𝑟

𝜕𝑢𝜃

𝜕∅
 +  (

𝑢𝑟𝑢𝜃 + 𝑢𝜃𝑢∅𝐶𝑜𝑡(∅)

𝑟
)}   =   −

1

𝑟𝑆𝑖𝑛(∅)

𝜕𝑃

𝜕𝜃
  +   𝜌𝑔𝜃   +   

 +    𝜇 {
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑢𝜃

𝜕𝑟
) + 

1

𝑟2𝑆𝑖𝑛(∅)2

𝜕2𝑢𝜃

𝜕𝜃2   +   
1

𝑟2𝑆𝑖𝑛(∅)

𝜕

𝜕∅
(𝑆𝑖𝑛(∅) 

𝜕𝑢𝜃

𝜕∅
) + (

2
𝜕𝑢𝑟

𝜕𝜃
 +  2𝐶𝑜𝑠(∅)

𝜕𝑢𝜃

𝜕𝜃
 − 𝑢𝜃

𝑟2𝑆𝑖𝑛(∅)2 )} 
 

(152) 

𝜌 {
𝜕𝑢∅

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢∅

𝜕𝑟
 +   

𝑢𝜃

𝑟𝑆𝑖𝑛(∅)

𝜕𝑢∅

𝜕𝜃
 +   

𝑢∅

𝑟

𝜕𝑢∅

𝜕∅
 +  (

𝑢𝑟𝑢∅ − 𝑢𝜃
2𝐶𝑜𝑡(∅)

𝑟
)}   =   −

1

𝑟

𝜕P

𝜕∅
  +   𝜌𝑔∅   +   

      +    𝜇 {
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑢∅

𝜕𝑟
)  +  

1

𝑟2𝑆𝑖𝑛(∅)2

𝜕2𝑢∅

𝜕𝜃2   +   
1

𝑟2𝑆𝑖𝑛(∅)

𝜕

𝜕∅
(𝑆𝑖𝑛(∅) 

𝜕𝑢∅

𝜕∅
)  + 

2

𝑟2

𝜕𝑢𝑟

𝜕∅
 −  (

𝑢∅  +  2𝐶𝑜𝑠(∅)
𝜕𝑢𝜃

𝜕𝜃
 

𝑟2𝑆𝑖𝑛(∅)2 )} 
 
 
(153) 

 

along with the mass continuity equation defined as: 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝑢𝑟)  +   

1

𝑟𝑆𝑖𝑛(∅)

𝜕𝑢𝜃

𝜕𝜃
 +  

1

𝑟𝑆𝑖𝑛(∅)

𝜕

𝜕∅
(𝑆𝑖𝑛(∅)𝑢∅)   =    0 (154) 

 
In this coordinate system, there are two external inputs in the form of  the Sine and Cosine function 
which according to equation (35) and (36) can each be expressed in terms of the Tangent half angle 
formula so that we can set  "q = 1"  in our IAMPT.  All initial conditions and variable coefficients 
are handled in exactly the same manner as with the  Cartesian  and  Cylindrical  coordinate system. 

Because of the universality of the new method of analytical integration we can extend this analysis 
to cover all possible cases for both compressible and incompressible flow where the concept of an  
NCSA  table would still be applicable throughout.   
 

 



 

8.  The development of  a  universal  software for the analytical solutions of all  DEs and 
     systems of  DEs  under a single unified theory of analytical integration 

The highly computational nature of the universal differential expansion described by  equations (1) 
through (5) for representing all mathematical equations makes it very difficult for conducting any 
real meaningful numerical experimentations even for solving the simplest type of  DE.  For solving 
the vast majority of  DEs  and systems of  DEs  of greatest importance to the physical sciences, 
super computers are by far more suitable for this type of high level and very advanced form of 
computational analysis. 

The advent of Quantum computers in the near future could significantly improve the performance 
of handling even the most complex systems of  PDEs.  They would by far exceed the capabilities of 
even our most powerful  super computer of our time because they would operate entirely on the 
fundamental principles of  Quantum theory which is based on the study of energy at the atomic and 
subatomic level.  Such advanced computer technology would allow for the capability of performing 
multiple tasks in parallel thereby resulting in a significant increase in the billion-fold when 
compared to conventional computer systems.    

Among the many possible states of operation is the binary state of a  Quantum bit or Qubit that 
would either be defined as spin-down or spin-up with each mode entirely controlled by a pulse of 
energy originating from a laser beam.  Major centers of research in Quantum computing are 
currently in operation that would include MIT, IBM, Oxford, Harvard, Stanford  and the Los 
Alamos National Laboratory. 

The greatest advantage for having arrived at a unified theory of analytical integration is that it can 
be converted into a  single major universal software  by which  all  DEs and systems of  DEs  may 
be resolved under a single common mathematical ideology.  Such a universal software development 
would be referred to as a "Numerical Control Analytics Software"  or  NCAS.  It would operate on 
the principle of determining the existence of  general  analytical solutions  to DEs and systems of 
DEs through the application of a very unique method of conjecture that would be driven entirely by 
computational analysis.  This would represent a far better alternative than having to maintain a large 
number of highly dispersed mathematical theories all of which could never be consolidated in terms 
of a single universal software development package such as the one proposed here. 

If such a Numerical Control Analytics Software would be applied only to Physics, it would certainly 
qualify as being “the complete unified theory of physics”  but only in its most “raw state”.   Human 
intervention would then only be necessary for complete translation of all computer results that 
would appear in the form of  exact  numerical computations into practical decipherable 
mathematical equations.  

If such a Numerical Control Analytics Software would be applied only into Engineering Science,  it 
would become the standard method of all engineering analysis  by which the concept of an  IAMPT  
would be applied very rigorously for resolving all  relevant DEs and systems of  DEs in the form of  
general closed form solutions only.  This would set the stage for the complete formulation of many 
fundamental key theorems similar to what the famous Superposition Theorem has succeeded in 
accomplishing in the general theory of  linear physical systems. 

 

9.  Conclusions 

The problem of integration has always presented itself as a real challenge when attempting to find 
closed formed solutions for the vast majorities of DEs and systems of DEs.   The main reason for 
this is the frequent occurrences of integrals from which the vast majority of them cannot always be 
resolved exactly under any existing methods of mathematical analysis.  This complication can be 
completely avoided altogether if rather than proceeding with some initially assumed closed form 
solution for attempting to solve a DE or a system of  DEs,  we instead work only with the complete 
differential representation of the same initially assumed closed form solution. The greatest 
advantage for proceeding in that fashion is the highest expectation that many of the assumed 
differentials will in the end appear exact and thus  always completely integrable in the end.  This in 
fact is quite achievable because every differentiable mathematical equation can always be converted 
in complete differential form by following the same basic unique mathematical structure as the one 



 

introduced by equations (1) through (5).  Such a unique differential expansion form is so universal 
to all mathematical equations that it would certainly qualify by all mathematical standards as being 
a complete unified analytical theory of integration for resolving all types of DEs and systems of  
DEs in terms of closed form solutions.  Many key mathematical properties of this unified analytical 
theory of integration have been quite extensively investigated in the past mainly by myself.  But the 
one that stands out the most is the ability for resolving "all types" of  DEs  and systems of DEs 
uniquely in terms of  "general closed form solutions"  by utilizing a method of conjecture that 
would be driven entirely on computational analysis alone.  We use the Navier-Stokes equations as a 
perfect model for illustrating this very unique approach of working with initially assumed 
differentials.  In our example, we explore the various types of systems of PDEs that were developed 
in the past under the three most popular set of coordinate systems.  In the final analysis, we were 
able to establish that independent of the type of flow whether compressible or incompressible,  the 
boundary conditions and various external forces present can always be completely accounted for 
during the process of working with these types of initially assumed differential forms.   From the 
very unique properties of such a proposed unified differential method of analysis, it is expected that 
many cases of the Navier-Stokes equations will always be completely integrable in terms of such 
"general" closed form solutions by following a very unique method of conjecture.  From the 
Navier-Stokes equations we can apply the same type of universal differential analysis for 
investigating other types of fundamental equations that would include Maxwell's equations, 
Einstein's field equations, the Schrödinger equation just to name a few.   Figure 3.1 provides a 
direct relationship between the method of universal differential analysis and the elusive "theory of 
everything".  From this table, one is very tempted to conclude that for arriving at such a gigantic 
theory for explaining everything about our universe may no longer be just a matter for modern 
physics to resolve over time.  Rather, it is expected that such a  theory of everything may only be 
achievable in the end from the complete consolidation of every single theory describing its own 
unique physical system under one big gigantic universal theory that in the end will succeed in 
explaining everything about our universe. 
 

10.  Appendix A 

 

(𝟏. 𝟏)    𝐟(𝐱, 𝐲)  =   𝟎  =   𝒂𝟏𝒙
𝟐  +   𝒂𝟐𝒚

𝟐  +   𝒂𝟑𝒙𝒚 +  𝒂𝟒 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

 (1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2)  =  0 =    𝑎1𝑊1
2  +   𝑎2𝑊2

2  +   𝑎3𝑊1𝑊2  +   𝑎4  

(2).  Secondary Expansion:  

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 
 

(𝟏. 𝟐)     𝐟(𝐱, 𝐲)  =   𝟎  =   𝒂𝟏𝒚 + 𝒂𝟐𝒆
𝒂𝟑𝒙𝑺𝒊𝒏(𝒂𝟒𝒙) 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

𝑊3 =  𝑒𝑎3𝑥 

𝑊4 =   𝑇𝑎𝑛(𝑎4𝑥/2) 
 

(1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2,𝑊3,𝑊4)  =  0 =    𝑎1𝑊2(1 + 𝑊4
2) +   2𝑎2𝑊3𝑊4 

 



 

(2).  Secondary Expansion: 
 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

                    𝑎3𝑊3𝑑𝑥   +   0 ∙ 𝑑𝑦  =   𝑑𝑊3 

        𝑎4(1 + 𝑊4
2)𝑑𝑥  +   0 ∙ 𝑑𝑦  =   2𝑑𝑊4 

 
 

 

(𝟏. 𝟑)    𝐟(𝐱, 𝐲)  =   𝟎  =  𝒙𝟐  +  𝒚𝟐√(𝒙 − 𝒚) +   𝟑𝒆𝟑𝒙 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

𝑊3
2 =   𝑥 −   𝑦  =   𝑊1  −   𝑊2 

𝑊4 = 𝑒𝑥  =   𝑒𝑊1 
 

(1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2,𝑊3,𝑊4)  =  0 =   𝑊1
2  +   𝑊2

2𝑊3  +   3𝑊4
3 

(2).  Secondary Expansion: 
 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

        𝑑𝑥  −   𝑑𝑦  =  2𝑊3 𝑑𝑊3 

        3𝑊4𝑑𝑥 +   0 ∙ 𝑑𝑦  =   𝑑𝑊4 

 

 

(𝟏. 𝟒)     𝐟(𝐱, 𝐲)  =   𝟎  =  𝐱√𝒙𝟐 + 𝒚𝟐  +   𝒚√𝒙𝟐 − 𝒚𝟐 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

𝑊3
2 =   𝑊1

2   +   𝑊2
2 

𝑊4
2 =   𝑊1

2  −   𝑊2
2 

 

(1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2,𝑊3,𝑊4)  =  0 =    𝑊1𝑊3  +   𝑊2𝑊4 

(2).  Secondary Expansion: 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

        𝑊1𝑑𝑥  +   𝑊2𝑑𝑦  =   𝑊3𝑑𝑊3 

        𝑊1𝑑𝑥  −   𝑊2𝑑𝑦  =   𝑊4𝑑𝑊4 

 

 

 (𝟏. 𝟓)     𝐟(𝐱, 𝐲)  =   𝟎  =   𝐥𝐧(𝟏 + √𝒙 + 𝟏
𝟑

)  −  √𝒚 + 𝟏𝟔  −   𝟏 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

𝑊3
3 =   𝑥 +   1 =   𝑊1  +   1 

𝑊4 =   ln(1 + √𝑥 + 1
3

)  =   ln( 1 + W3)  

𝑊5
6 =   𝑦 +   1 =   𝑊2  +   1   

 



 

 

(1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2,𝑊3,𝑊4,𝑊5)  =  0 =    𝑊4  −   𝑊5  −   1 

(2).  Secondary Expansion: 

 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

 

        𝑑𝑥  +   0 ∙ 𝑑𝑦  =   3𝑊3
2𝑑𝑊3 

        𝑑𝑥  +   0 ∙ 𝑑𝑦  =   3𝑊3
2(1 + 𝑊3)𝑑𝑊4 

  0 ∙ 𝑑𝑥  +         𝑑𝑦  =   6𝑊5
5𝑑𝑊5 

(𝟏. 𝟔)     𝐟(𝐱, 𝐲)  =   𝟎  =   𝟑𝐒𝐢𝐧(𝐱 + 𝐲) −   𝒍𝒏 (𝒆𝒙 + √𝑪𝒐𝒔(𝒙))  +   𝒍𝒏 (
𝒙

𝒚
) +  √𝑨𝒓𝒄𝑻𝒂𝒏(𝟐𝒙) 

𝑊1 =   𝑥 

𝑊2 =   𝑦 

𝑊3 =   𝑇𝑎𝑛 (
𝑥 + 𝑦

2
) 

𝑊4 = 𝑒𝑥 

𝑊5  =   𝑇𝑎𝑛(
𝑥

2
) 

𝑊6
2  =   𝐶𝑜𝑠(𝑥) =   

1 − 𝑊5
2

1 + 𝑊5
2 

𝑊7  =   𝑙𝑛(𝑒𝑥 + √𝐶𝑜𝑠(𝑥))   =   𝑙𝑛(𝑊4 + 𝑊6) 

𝑊8  = 𝑙𝑛(𝑥)   

𝑊9  = 𝑙𝑛(𝑦) 

𝑊10
2  =   𝐴𝑟𝑐𝑇𝑎𝑛(2𝑥)  

 

(1).  Primary Expansion: 

𝐹(𝑊1,𝑊2, … ,𝑊10)   =   0  =    
6𝑊3

1 + 𝑊3
2  −  𝑊7  +   𝑊8  −   𝑊9  +   𝑊10  

(2).  Secondary Expansion: 
 

         𝑑𝑥 =   𝑑𝑊1 

         𝑑𝑦 =   𝑑𝑊2 

 

                               (1 + 𝑊3
2)𝑑𝑥  +   (1 + 𝑊3

2)𝑑𝑦    =   2𝑑𝑊3 

                                           𝑊4𝑑𝑥   +               0 ∙ 𝑑𝑦    =   𝑑𝑊4 

                              (1 + 𝑊5
2)𝑑𝑥   +               0 ∙ 𝑑𝑦    =   2𝑑𝑊5 

                                      −𝑊5𝑑𝑥     +               0 ∙ 𝑑𝑦   =   𝑊6(1 + 𝑊5
2)𝑑𝑊6 

{𝑊4𝑊6(1 + 𝑊5
2) −   𝑊5}𝑑𝑥      +               0 ∙ 𝑑𝑦   =   𝑊6(1 + 𝑊5

2)(𝑊4 + 𝑊6)𝑑𝑊7   

        𝑑𝑥    +       0 ∙ 𝑑𝑦   =   𝑊1𝑑𝑊8 

  0 ∙ 𝑑𝑥    +            𝑑𝑦   =   𝑊2𝑑𝑊9 

       𝑑𝑥    +        0 ∙ 𝑑𝑦  =   (1 + 4𝑊1
2)𝑊10𝑑𝑊10 



 

(𝟐. 𝟏)    𝐟(𝐳, 𝒙𝟏, 𝒙𝟐)  =   𝟎  =   𝐳 +  𝒛𝟑𝒙𝟏𝒙𝟐  −   𝒙𝟐  +   𝟏 

𝑊1  =   𝑧 

𝑊2  =   𝑥1 

𝑊3  =   𝑥2 

 

(1).  Primary Expansion: 

 

        𝐹(𝑊1,𝑊2,𝑊3)  =  0 =    𝑊1  +   𝑊1
3𝑊2𝑊3  −  𝑊3  +  1 

(2).  Secondary Expansion: 
 

        𝑑𝑧  +   0 ∙ 𝑑𝑥1   +   0 ∙ 𝑑𝑥2   =   𝑑𝑊1 

  0 ∙ 𝑑𝑧  +        𝑑𝑥1    +   0 ∙ 𝑑𝑥2   =   𝑑𝑊2 

  0 ∙ 𝑑𝑧  +   0 ∙ 𝑑𝑥1   +         𝑑𝑥2   =   𝑑𝑊3 

 
 

(𝟐. 𝟐)     𝐟(𝐳, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, )  =   𝟎  =   𝟓𝒙𝟐𝒙𝟑𝑺𝒊𝒏(𝒛𝒙𝟏𝒙𝟐)  +   (𝒙𝟏  +   𝒙𝟐)𝑪𝒐𝒔(𝒛 +   𝟑𝒙𝟐  + 𝟐𝒙𝟑)    +    𝟑 

 
𝑊1  =   𝑧 

𝑊2  =   𝑥1 

𝑊3  =   𝑥2 

𝑊4  =   𝑥3 

 

𝑊5 =   𝑇𝑎𝑛(𝑧𝑥1𝑥2/2) 

 

𝑊6  =   𝑇𝑎𝑛 {
𝑧 + 3𝑥2 + 2𝑥3

2
} 

 

 

(1).  Primary Expansion: 

       𝐹(𝑊1,𝑊2,𝑊3,𝑊4,𝑊5,𝑊6)  =  0 =    5𝑊3𝑊4 [
2𝑊5

1 + 𝑊5
2]    +   (𝑊2  +  𝑊3) [

1 − 𝑊6
2

1 + 𝑊6
2]   +   3 

(2).  Secondary Expansion: 
 

        𝑑𝑧   +    0 ∙ 𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊1 

  0 ∙ 𝑑𝑧   +          𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊2 

  0 ∙ 𝑑𝑧   +    0 ∙ 𝑑𝑥1    +          𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊3 

  0 ∙ 𝑑𝑧   +    0 ∙ 𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +         𝑑𝑥3    =   𝑑𝑊4 

 

(1 + 𝑊5
2)𝑊2𝑊3𝑑𝑧  +  (1 + 𝑊5

2)𝑊1𝑊3𝑑𝑥1  +   (1 + 𝑊5
2)𝑊1𝑊2𝑑𝑥2   +   0 ∙ 𝑑𝑥3   =   2𝑑𝑊5 

 

 (1 + 𝑊6
2)𝑑𝑧 +   0 ∙ 𝑑𝑥1  +   3(1 + 𝑊6

2)𝑑𝑥2  +   2(1 + 𝑊6
2)𝑑𝑥3   =    2𝑑𝑊6 

 

 

 

 

 

 



 

(𝟐. 𝟑)     𝐟(𝐱, 𝐲)  =   𝟎  =   𝟑 𝐥𝐧(√𝒛 + 𝒙𝟏
𝟐 + 𝒙𝟐

𝟐𝟑
   −    𝟐𝟓𝒆𝟐𝒛𝒙𝟏𝒙𝟑   )   + 

                                                                                                             +   √𝒙𝟏
𝟐 + 𝒙𝟐

𝟐  +  𝒙𝟑
𝟐𝟓
   −   𝟒𝒛𝟑   +    𝟏 

W1  =   z 

W2  =   x1 

W3  =   x2 

W4  =   x3 

 

W5
3  =   z +  x1

2  +   x2
2  =   W1  +   W2

2  +   W3
2 

 

W6  =   e2zx1x3   =    e2W1W2W4  

 

W7  =  ln ( √z + x1
2 + x2

23
  −    25e2zx1x3  )  −    ln (W5  −   25W6) 

 

W8
5  =   x1

2  +   x2
2  +   x3

2  =   W2
2  +   W3

2  +   W4
2  

 

 

(1).  Primary Expansion: 

 

        F(W1,W2,W3, … ,W8)  =  0 =    3W7   +   W8   −   4W1
3   +   1 

(2).  Secondary Expansion: 
 

        𝑑𝑧   +    0 ∙ 𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊1 

  0 ∙ 𝑑𝑧   +          𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊2 

  0 ∙ 𝑑𝑧   +    0 ∙ 𝑑𝑥1    +          𝑑𝑥2    +    0 ∙ 𝑑𝑥3   =   𝑑𝑊3 

  0 ∙ 𝑑𝑧   +    0 ∙ 𝑑𝑥1    +    0 ∙ 𝑑𝑥2    +         𝑑𝑥3    =   𝑑𝑊4 

𝑑𝑧   +   2𝑊2𝑑𝑥1   +   2𝑊3𝑑𝑥2   +   0 ∙ 𝑑𝑥3   =  3𝑊5𝑑𝑊5
2 

2𝑊2𝑊4𝑊6𝑑𝑧  +   2𝑊1𝑊4𝑊6𝑑𝑥1   +    0 ∙ 𝑑𝑥2   +    2𝑊1𝑊2𝑊6𝑑𝑥3   =    𝑑𝑊6 

(1 − 150𝑊2𝑊4𝑊5
2𝑊6)𝑑𝑧  +    (2𝑊2 − 150𝑊1𝑊4𝑊5

2𝑊6)𝑑𝑥1   +    2𝑊3𝑑𝑥2   −    

                                                                                                                   150𝑊1𝑊2𝑊5
2𝑊6𝑑𝑥3  =    3𝑊5

2(𝑊5 − 25𝑊6)𝑑𝑊7 

0 ∙ 𝑑𝑧  +    𝑊2𝑑𝑥1   +    𝑊3𝑑𝑥2   +    𝑊4𝑑𝑥3   =    2.5𝑊8
4𝑑𝑊8 
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