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Abstract 
Reduced order model constitutes an efficient option to decrease the high computational cost of 
dynamical systems governed by partial differential equations (PDE). The technique based on proper 
orthogonal decomposition (POD) was first presented in the article [1] to generate a reduced set of 
basis functions for Galerkin representation of PDEs which results in approximate the simulation at 
any time point by solving an ODEs of time dependent coefficients. Our approach in this article 
targets the development of a non-intrusive reduction technique. We keep the same manner of 
obtaining basis functions, while approximating the time dependent coefficients using Kriging based 
surrogate model. The proposed method is then illustrated with an application to the simulations of 
heat diffusion systems on a thin rod and on a square plate. The numerical results illustrate the 
simulation using the proposed idea.   
Keywords: Proper Orthogonal Decomposition, Kriging surrogate model, heat diffusion system. 

1 Introduction 

Most of engineering problems may be presented as systems governed by partial differential 
equations. With the development of science, more rigorous device requirements arise to capture the 
characteristics of more complex systems, which are common for example in semiconductor 
manufacturing. The purpose, however, is not to provide an introduction to the complexity of such 
systems, Instead, we wish to propose a general methodology for implementation of one or two 
techniques based on surrogate models and apply them to a linear system of heat diffuse equation. 
 
A widely used approach is performing a set of computer experiments ‘a priori’. The data sampling 
is then used for construction of meta-models linking design variables with responses. The literature 
shows that a wide range of approximation methods that has been used for this purpose, such as 
polynomial response surfaces [3], least squares approximation [4], Kriging [5], radial basis 
functions [6] etc. In particular, surrogate model, developed by Krige [7] and then improved by 
Matheron [8], is emphasized here, as it is an exact interpolation method and a form of generalized 
linear regression for the formulation of an optimal estimator in a minimum mean square error sense. 
Due to the superiority of Kriging, it is widely used in structural reliability [9] and in optimization 
analysis [10]. 
 
Another class of among so-called physical based models, the popular one is Proper Orthogonal 
Decomposition (POD) also known as Karhunen-Loeve expansions in signal analysis and pattern 
recognition [11], or the Principal Component Analysis in statistics [12], or the method of empirical 
orthogonal functions in geophysical fluid dynamics [13,14]. Detailed description of the POD can be 
found in [15]. POD provides a useful tool for efficiently approximating a large amount of data. 
Lumley [16] first used POD to study turbulent flows. In 1987, Sirovich [17] incorporated the 
method of ‘snapshots’ into the POD framework and made important progress in this field. Other 
applications of POD are given in [18-20]. 
 
In this paper, a technique combining the advantages of Kriging surrogate model and POD model is 
proposed to represent heat diffusion on a one- or two- dimensional spatial domain. Suppose a given 
set of data sampling, discretization of PDE is approximately executed with the Galerkin method. 
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Then, we construct a basis of the finite dimensional function space of interest. In [2], the time 
dependent coefficients are obtained by solving an ODE. Here we propose a “non-intrusive” 
technique. Based on the original discrete data information, the approximated representation is built 
with Kriging surrogate model for the POD coefficients. It is finally applied to obtain the 
temperature field for any untried time point. 
 
The paper is organized as follows: In section 2 we present the simulation of heat diffusion on a thin 
rod (one-dimensional spatial domain) and on a square plate (two-dimensional spatial domain) using 
infinite series expansion and finite difference scheme. Then we review the Galerkin projection and 
the POD model in the section 3. In section 4, a new method combining POD and Kriging surrogate 
model is described, and illustrates feasibility and efficiency of the proposed technique, followed by 
the numerical results in Section 5. The paper ends with conclusions and prospects. 

2 Description of Heat Diffusion Equation 

We consider an initial boundary value problem (IBVP) of heat equation. The methodology of “high 
fidelity” simulation is then explained to get the sampling data. 
Case1: the one-dimension (1D) simulation of heat diffusion equation: 
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where ( , )x tu represents the temperature field on a thin rod.  
Similarly, the case 2 is given by the following IBVP with two-dimension (2D) simulations: 
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where ( , , )x y tu represents the temperature field on a flat plate. 

2.1 Methodology 

In order to obtain a set of “high fidelity” simulation data. A convenient method is to evaluate the 
infinite series solutions to the respective IBVPs at a set of spatial points and temporal values.  
The infinite series solution to IBVP (1) is given by 
 

                    2 2
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where 2 (1 cos( ))n n
n
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 A . And the infinite solution to IBVP (2) is given by 
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where 2

4 (1 cos( ))(1 cos( ))mn m n
mn

 


  A . 

An alternative method is to solve this equation numerically. We approximate all the derivatives by 
finite differences with a second-order central difference scheme for the spatial derivative at position 
and the forward difference in time. The discrete form is then written as: 
1D: 
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2D: 
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where t is time step, x and y are space steps in direction x and y respectively, 0,1,2, ;n    

0,1, ; 0,1, ,i I j J   . 
So, with these recurrence relations, and knowing the values at time n , one can obtain the 
corresponding values at time 1n  . 0 0,0,n nu u and ,,n n

I I Ju u must be replaced by the boundary conditions. 
Furthermore, based on the initial conditions, 0 0

,,i i ju u are all given. 

2.2 “High fidelity” simulation analysis 

The aim in this section is to compare the difference of two “high fidelity” simulations. More 
precisely, above two methodologies are used to simulate the temperature field at each value of time 
in the set for IBVP (1) {0.00, 0.001, 0.002, …, 0.200} and in IBVP (2) in the set {0.00, 0.05, 
0.10, …, 0.45, 0.50}. The space step is 0.01 in 1D and 0.01×0.01 in 2D. Several temperature 
distributions are shown in Figure 1. The data was stored for use as empirical data in the POD.       
                                                

 
Figure 1. Top Left: Simulation of IBVP (1): time dependent heat diffusion on 1D rod with 
constant initial condition and zero boundary conditions. Bottom Left: The finite differences 
simulation of IBVP (1). Right: Simulation of IBVP (2): time dependent heat diffusion on 2D 
plate with constant initial condition and zero boundary conditions. 
 
From Figure 1, we can observe that the simulations using analytical functions coincide with those 
obtained by the numerical method. 
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3 Approximate simulation based on the Galerkin Method and the POD 

This section includes a brief overview of the Galerkin method for PDE discretization and 
implementation of POD to get an orthogonal basis of space domain.  

3.1 Discretization with the Galerkin method 

The Galerkin method is a discretization scheme for PDEs which is one type of spectral methods or 
methods of weighted residuals. The main idea is to separate variables and to represent a field with a 
truncated series expansion given by 
 

1

( , ) ( ) ( )
N

i i
i

t t


u x φ x                                                                (7) 

 
where ( )iφ x are trial functions which can form an orthonormal basis for the approximate function 
space. ( )i t are time dependent coefficients obtained by minimizing the residuals or errors between 
approximate and exact values. Equivalently, the residuals must be orthogonal to each one of the 
given trial functions. Thus, the original infinite dimensional system can be approximated by an N- 
dimensional one. 

3.2 Construction of reduced basis function via the POD 

As stated earlier, a set of “high fidelity” simulations is recorded yielding the snapshots of the heat 
equation solution for IBVP (1) at M=200 equally spaced sample times between 0t  and 0.200t  , 
and at M=20 equally spaced sample times between 0t  and 0.5t  for IBVP (2) (the IC was also 
used as the first snapshot ). These snapshots are used as the empirical data for computing a set of 
basis functions via the POD. 
If we denote the set of original snapshots as { ( , ) : 1,2,..., }kt k Mu x then the average snapshot is 
computed as 
  

1

1( ) ( , )
M

k
k

t
M 

 u x u x                                                                      (8) 

 
and the centered snapshots are given by  
 

)(),(),()( xutxutxvv kk
k                                                           (9) 

 
This adjustment leaves us with a new ensemble of data samples{ ( , ) : 1,.... }kt k Mυ x . These snapshots 
are then used to compute the M M  empirical correlation matrix C whose entries are given by 
 

  Mjidxxvxv
M

ji
ij ,,1,)()(1)( )()( C                                            (10) 

 
where Ω is the spatial domain ([0,1]). The problem is reduced to finding the eigenvectors and 
eigenvalues of C , and the eigenvectors ( )nA of C and the corresponding eigenvalues n satisfy 
 

( ) ( ) 1,...,n n
n n M CA A                                                           (11) 
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which can be solved for corresponding system of M eigenvalues and M eigenvectors. The 
numerical integration (10) is hard-coded using a simple approximation technique. The eigenvalues 
and eigenvectors of C  are then used to compute the empirically determined eigenfunctions, and the 
basis functions are then computed as linear combinations of data samples using 
 

    ( ) ( )

1
( ) ( ) 1, ,
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n k

n k
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n M
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 φ x A υ x                                                     (12) 

 
It is easy to check 
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This completes the construction of the orthonormal set 1 2{ , , , }Mφ φ φ . 
By utilizing the properties of the POD one can specify an energy level e  to be captured and then 
seek N<<M such that 
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Then, based on the Galerkin method, the approximation v̂ to the ( , )tυ x is given by the truncated 
series expansion 
 

1

ˆ( , ) ( ) ( )
N

n n
n
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

υ x φ x .                                                           (14) 

 
The average snapshot u is then added  
 

ˆ ˆ( , ) ( ) ( , )t t u x u x υ x                                                             (15) 
 
to reconstruct the original data samples. The approximation order N can be varied to achieve the 
desired degree of accuracy.  
The ( )n t  are time-dependent coefficients chosen to ensure the original PDE satisfied as closely as 
possible by (14). This is achieved by minimizing the residual. More details are discussed in the 
following section.  

3.3 Calculation of the coefficients by solving an ODE 

We suppose we have a system governed by the PDEs (in symbolic form) 
 

( ); : (0, )D D
t


   


υ υ υ                                                          (16) 

 
with appropriate boundary conditions and initial conditions, where ( )D �  is a spatial operator , e.g. 
the Laplacian in the case of heat diffusion. Define the residual as 
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ˆ ˆ( , ) ( )t D
t


 

υr x υ .                                                                (17) 

 
We force the residual to be orthogonal to a suitable number of eigenfunctions, i.e. 
 

( , ), ( ) 0 1, ,nt n N r x φ x  .                                                       (18) 
 
Substituting (14) into (17) yields, 
 

1 1
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Applying the orthogonality condition (18) and using the orthonormality property of the set of 
eigenfunctions results in 
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Thus, requiring the residual be orthogonal to the first N  eigenfunctions yields a system 
of N ordinary differential equations in t (an thN -order system) 
 

( )Fα α                                                                      (21) 
 
where 1( , , )N α  and : N NF   . 
The initial conditions for the resulting system of ODEs are determined by a second application of 
the Galerkin approach. We force the residual ˆ( ) ( ,0) ( ,0) I x υ x υ x of the initial conditions to also be 
orthogonal to the first N  eigenfunctions. We obtain a system of N linear equations 
 

(0) ( ,0) ( ) 1, ,i iD
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The heat diffusion system dynamics are described by  
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Applying (20) yields the system of linear ODEs 
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with initial conditions  
 

(0) ( ) (0, ) 1, ,i iD
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where [0,1]D  for the rod. This results in linear system of ODEs 
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( ) Γ ( )+t tα α b                                                                 (26) 
 
where ( )tα is an N -vector, Γ is the N N matrix with entries 
 

2( ) ( ) ( )Γ ij i jD
d  φ x φ x x                                                           (27) 

 
and b is an N -vector with elements 
 

2 ( ) ( )i iD
b u d  x φ x x .                                                               (28) 

 
The solution to (26) is given by the variation of constants formula 
 

0
( ) (0)Γ Γ( )tt tt e e d   α α b                                                            (29) 

 
where the IC (0)α is an N -vector with entries given by (22). However, rather than hard-code the 
solution (29) we can numerically integrate (26) using Runge-Kutta method. 
Once the ODE (26) is solved and evaluated at the desired values of t , the ˆ( , )tu x is known. 

4 Calculation of the coefficients by Kriging interpolation 

Once the set of snapshots{ ( , ) : 1, , }kt k Mυ x  and reduced basis functions nφ are obtained, the set of 
coefficients can be calculated by the projection of those snapshots on the basis fuctions: 
 

( ) ( , ), , 1, , ; 1, ,i
k k it i M k M    υ x φ                                                 (30) 

 
or 
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where , � � denotes the inner product. 
Then, any general approximation technique may be used to build surrogate response surfaces of 
each coefficient ( ), 1, ,i t i M   . Here, Kriging interpolation is used as it can capture the local 
phenomena. The simulation of heat diffusion is finally assembled at any time point: 
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Same as the before, we can using the truncated expansion to evaluate ( , )tu x as 
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4.1 Kriging surrogate model 

Kriging meta-model is an interpolation technique based on statistical theory, which consists of a 
parametric linear regression model and a non-parametric stochastic process. It needs a design of 
experiments to define its stochastic parameters and then predictions of the response can be 
completed at any unknown point. Given an initial design of experiments (initial 
DoE): (1) (2) ( ){ , , , }n X x x x , with observed responses, (1) (2) ( ){ , , , }ny y y Y  .Y could be generated 
by high fidelity simulations or experiments.  
Kriging surrogate model presumes the real function relationship between the DoE and the response 
as  
 

( ) ( )y Z X X                                                                      (34) 
 
where   is a hyperparameter which is determined part and ( )Z X is a Gaussian stochastic process 
with zero mean and covariance in the form of  
 

( ) ( ) 2 ( ) ( )Cov( ( ), ( )) ( , )i j i j
zZ Z X X R X X                                                   (35) 

 
where R  is the correlation function between two sample points and 2

z  the Gaussian process 
variance. For R , most applications use Gaussian function 
 

( ) ( ) ( ) ( )( , ) exp( ( , ))i j i jd R X X X X                                                          (36) 
 
where ( ) ( )( , )i jd X X is the distance function between ( )iX and ( )jX . Usually it is a weighted distance 
function 
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Hyperparameters k  control the degree of nonlinearity in kriging surrogate model. Sometimes we 
choose k  equal to 2. Through maximum likelihood prediction, the estimates for   and 2

z  is given 
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where Ψ  is a n n  matrix ( ) ( )( ) ( , )Ψ i j

ij  R X X , I is the unit matrix. Thus the prediction model could 
be built as 
 

T 1ˆ ˆ( ) ( ) ( )Ψy    X r X Y I                                                          (39) 
 
Here (1) (2) ( ) T( ) [ ( ), ( ), , ( )]nr X R X,X R X,X R X,X . 
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5 Numerical Analysis 

Now, we present some results of the above computations and simulations. The whole process has 
been performed in four steps: 
- A set of basis functions was determined using the POD (according to from Eq.(8) to Eq.(11)) for 
the 1D heat diffusion system with 201M  snapshots and 21M  in 2D  
-  Calculation of the coefficients α by projection of snapshots on the basis  
- Based on the data obtained in step 1 and 2, the Kriging surrogate model can determine an 
approximation of coefficients α(t) for any time point 
-  The simulation is then approximated by Eq. (32) or Eq.(33) 

5.1 Eigenvalues and corresponding eigenfunctions 

As stated earlier, the eigenvalues measure the relative energy of the system dynamics. Figure 2 
shows the resulting empirically determined eigenfunctions for the 1D and 2D heat diffusion systems 
corresponding to first four eigenvalues in decreasing order.  
 

 
Figure 2. The first four basis functions of the system with corresponding eigenvalues for IBVP 

(1) (Left) and for IBVP (2)(Right). 
 
From Fig.2, it is readily observed that the four modes contain virtually all of the energy.  

5.2 Reconstruction error analysis 

The reconstruction errors are calculated for the original snapshots. Figure 3 shows that the relative 
errors ‖u-ữ‖/‖u‖ on the temperature field (Figure 3,left for 1D, right is about 2D) decrease quickly 
with increasing the number of modes. Furthermore, we observe that the reconstruction errors at the 
initial time point are slightly smaller than those at other time points. So that’a why in the following 
Garlerkin approximations, only the first three modes are used (N=3). 
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Figure 3. The construction errors on the temperature field u for both two IBVPs. 

 

5.3 Comparison of exact temperature field and its reconstruction  

From Figure 4, middle, we observe that the reconstruction temperature field is similar to the exact 
one. As expected, solution approximated with coefficients based on Kriging interpolation 
reproduces the original data when the number of POD modes N is chosen to equal the number of 
snapshots M. While a slight error with the truncation of POD modes, N =3. This can be seen more 
clearly in Figure 5. 
 

 
Figure 4. Original heat diffusion data u  (top, left) from infinite series solution, and 
reconstruction temperature field of IBVP(1) using modes N=M=201 or empirical data 
determined eigenfunctions N(top, right) and ones with N=3 (bottom, left) for 0t  , 0.04, 0.08, 
0.12, 0.16, 0.20 respectively. 
 

Table 1. The reconstruction error with N=201 and N=3 respectively 

Error t=0.0 t=0.001 t=0.004 t=0.009 
u u_appox u  3.3829e-12 1.0317e-12 1.8553e-12 8.1031e-13 
u u_tru u  0.0270 0.0481 0.0091 0.0156 
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Figure 5. Heat diffusion profiles for 0,0.001,0.004,0.009t  . 

   
Figure 5 gives to the exact temperature field and reconstruction one at different time points. The 
errors are given in table 1. We observe that the approximations are accurate. That is to say, the 
approximation accuracy increases rapidly with time, although there is difficulty in reproducing the 
initial condition. This phenomenon is due to the fact that the solution progress from a discontinuous 
initial condition to smooth profiles requires fewer terms to get equivalent accuracy. Similar 
conclusion is observed for the 2D domain, Figure 6. 

 

 
Figure 6. Approximate solutions of IBVP (2) using empirically determined eigenfunctions for 
t=0, 0.025, 0.05, 0.075. Left: 201 eigenfunctions are used. Right: 3 eigenfunctions are used. 

 
As stated earlier, Kriging meta-model is a technique that can provide the predictions of the response 
at arbitrary point. Therefore, the advantage we used the Kriging to interpolation the coefficient 

( )tα of POD is that we can calculate the value of u at any time point different from the sampling 
points. Figure 7 shows the comparison of original data u and others two approximate values with 
N=201 denoting u_approx and N=3 for u_tru  at 0.0045, 0.1255, 0.201, 0.210t  . 
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Figure 7. The values of u , u_approx ,and u_tru  at 0.0045, 0.1255, 0.201t   and 0.210t  . 
 
From Figure 7, we can conclude that the prediction of u can get good accuracy when the time 
point t is in the region [0,0.2]. However, when t becomes larger than 0.2, the errors between exact 
field u and the approximations u_approx become much bigger with the time increasing. That is 
obviously due to the average field computed from the snapshots at the time points belonging in the 
region [0,0.2]. 

 

 
Figure 8. The first three ( ), 1, 2,3i t i  for both two heat diffusion equation systems. 

 
In Figure 8 we show the first three αi(t) ,i=1,2,3 computed using inner product. It appears better to 
choose the second order polynomial function for regression in Kriging. While, the linear function 
for regression in IBVP(2) seeing from the right of Fig.8. 
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6 Conclusions 

In this article, a technique combining the advantages of two types of surrogate models has been 
proposed to approximate the simulation of PDEs. After descritization of PDEs with the Galerkin 
method, the basis functions of space are first obtained by the standard POD. The second part 
consists in approximating the coefficients of Garlerkin discretization form of PDEs using Kriging 
surrogate model. The resulting reduced order model is then applied to simulate the heat diffusion in 
one-dimension rod and two-dimension plate. The numerical results show that reconstructed 
temperature field is efficiently approximated with the non-intrusive POD approach. The 
reconstruction errors are only controlled by the number of POD basis functions, as the Kriging 
interpolation of coefficients does not influence the precision of Garlerkin approximation. 
 
In terms of future prospects, we will be interested in using this method to reconstruct the reduced 
order model for more complex systems and consider the multi-fidelity data at the same time. 
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