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ABSTRACT

Matrices that appear in the boundary element methods and finite element methods are often structured (or low-rank, or
data-sparse) [3, 5]. This means that they exhibit rank-deficient blocks, typically the blocks corresponding to far range
interactions in the physical space. Identifying and compressing these low-rank blocks, e.g., using SVD or a rank-revealing
factorization, is the key to reducing the storage and computational requirements of many matrix operations, such as
performing matrix-vector products, computing eigenvalues, and solving linear systems. In this talk, we will focus on the
latter, for both dense and sparse matrices. For sparse matrices, the low-rank property is usually not found in the input
matrix but at intermediate steps of the factorization algorithms used to solve linear systems.

Many different techniques, referred to as low-rank representations, have been proposed in the literature. Among others, the
Hierarchically Semi-Separable (HSS) matrices [8] and Block Low-Rank representations [2] have been widely studied and
have recently been implemented in parallel solvers. However very few comparison results can be found in the literature;
usually they are restricted to model problems, or to comparing a single low-rank algorithm against a non-low-rank one.
Our goal is to compare the performance of the HSS and BLR approaches for dense and sparse matrices arising from
engineering applications.

LS-DYNA [6] is a highly advanced nonlinear finite element code. It allows implicit and explicit simulations of multi-
physics problems, such as mechanics, fluid dynamics, acoustics, electromagnetism. . . It is widely used by the automotive,
aerospace, and construction industries among others. The matrices that we will consider for this presentation all arise
from implicit simulations performed with LS-DYNA for real world applications. We will compare the HSS and BLR
techniques using multiple high-performance implementations. The HSS-based solver we will use is the STRUMPACK
code [4] [7], that can be used as a preconditioner or as a direct solver for both dense and sparse problems. For BLR we
will use MUMPS [1] [2], a sparse direct solver that has recently gained Block Low-Rank features.
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