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ABSTRACT

Matrices that appear in the boundary element methods and finite element methods are often structured (or low-rank, or
data-sparse) [3, 5]. This means that they exhibit rank-deficient blocks, typically the blocks corresponding to far range
interactions in the physical space. Identifying and compressing these low-rank blocks, e.g., using SVD or a rank-revealing
factorization, is the key to reducing the storage and computational requirements of many matrix operations, such as
performing matrix-vector products, computing eigenvalues, and solving linear systems. In this talk, we will focus on the
latter, for both dense and sparse matrices. For sparse matrices, the low-rank property is usually not found in the input
matrix but at intermediate steps of the factorization algorithms used to solve linear systems.

Many different techniques, referred to as low-rank representations, have been proposed in the literature. Among others, the
Hierarchically Semi-Separable (HSS) matrices [8] and Block Low-Rank representations [2] have been widely studied and
have recently been implemented in parallel solvers. However very few comparison results can be found in the literature;
usually they are restricted to model problems, or to comparing a single low-rank algorithm against a non-low-rank one.
Our goal is to compare the performance of the HSS and BLR approaches for dense and sparse matrices arising from
engineering applications.

LS-DYNA [6] is a highly advanced nonlinear finite element code. It allows implicit and explicit simulations of multi-
physics problems, such as mechanics, fluid dynamics, acoustics, electromagnetism. .. It is widely used by the automotive,
aerospace, and construction industries among others. The matrices that we will consider for this presentation all arise
from implicit simulations performed with LS-DYNA for real world applications. We will compare the HSS and BLR
techniques using multiple high-performance implementations. The HSS-based solver we will use is the STRUMPACK
code [4] [7], that can be used as a preconditioner or as a direct solver for both dense and sparse problems. For BLR we
will use MUMPS [1] [2], a sparse direct solver that has recently gained Block Low-Rank features.
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