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Abstract 

The objective of this paper is to study the numerical behavior (accuracy and numerical instability) 
of two high-order order single step direct integration algorithm for nonlinear dynamic. These 
algorithms are formulated in terms of two Hermitian finite difference operators of fifth-order local 
truncation error. In addition, these algorithms are unconditionally stable with no numerical damping 
for linear dynamic problems. The attention is devoted to the classical second-order Duffing and Van 
der Pol equations, as well the non-linear elastic pendulum, including the first-order Lorenz and 
Lotka-Volterra equations. Numerical applications compare the results including with those obtained 
by the second-order Newmark method    
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Introduction 

The objective of this paper is to study the numerical behavior of two high-order order single step 
direct integration algorithm for nonlinear dynamic. The first one has been developed by the author 
[1] and the second is the classical cubic Hermitian Algorithm developed by Argyris and Mlejek [2]. 
These algorithms are formulated in terms of two Hermitian finite difference operators [3] of fifth-
order local truncation error. In addition, these algorithms are unconditionally stable with no 
numerical damping for linear dynamic problems. As the analytical treatment of the numerical 
instability of the resultant nonlinear difference equation (i.e. the numerical version of the 
differential equation) is quite complex, just numerical investigation is performed. 

As the high-order algorithms takes into account the repeated differentiation of the governing 
equation, additional nonlinear terms are required to solve nonlinear structural dynamic problems. 
Thus, it is interesting to consider, for example, the classic iterative procedures presented by Argyris 
and Mlejek [2]. Although the presence of these additional nonlinear terms increases the number of 
operations in the iterative operations and introduces some numerical noise in comparison to the 
Padè-P22 algorithm family [4], the reduction obtained in the matrix factorization and higher orders 
of the relative radii errors are interesting attributes of the proposed algorithm. Numerical 
applications compare the results including with those obtained by Newmark method. The results 
show that the accuracy of both third-order algorithms is quite similar for refined mesh, but the 
numerical instability (that occurs for coarse mesh) is not similar.    

Hermitian Operators 

The step-by-step integration algorithm to be considered in this paper takes into account the 
following Hermitian operators [1] [3]: 
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where t  is the time step, i and i+1 indicate the step, y  is the function to be integrated, y , y  and 
y  are derivatives of the function with respect to time; A , B … 1G , 1H  are combination non-
dimension parameters that define the order of accuracy (local truncation error) [3]. Table 1 presents 
the combination parameters for the algorithms herein considered. 
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Duffing equation 

The Duffing equation and its first time derivative can be expressed as 
 

Table 1. Combination Parameters 

 A B C D E F G H 

Laier [1] 12  -12 6 6 1 -1 0 0 

Argyris [3] 1 -1 1 0 21/60 9/60 3/60 -2/60 

Newmark 0 0 1 -1 1/2 1/2 0 0 

 
1A  1B  1C  1D  1E  1F  1G  1H  

Laier [1] 0 0 12 -12 6 6 1 -1 

Argyris [3] 0 0 1 -1 6/12 6/12 1/12 -1/12 

Newmark 1 -1 1 0 1/4 1/4 0 0 
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where  ,  ,  , p and   are parameters of the equation. The second and third derivatives present 
in equation (2) can be explicitly written by 
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Now, taking into account equation (3) and Hermitian operators (1) the following nonlinear 
recurrence first-order difference equation can be written: 
 

 
 
 

2 2 3 3
i 1 i 1 i i 1 i i 1 i i 1 i i 1

2 2 3 3
i 1 i 1 1 i 1 i 1 1 i 1 i 1 1 i 1 i 1 1 i 1 i 1

F y , y Ay By C ty D ty E t y F t y G t y H t y 0

G y , y A y B y C y D y E t y F t y G t y H t y 0

     

     

              

            

      

      
    (4) 

 
And so, the corresponding Newton iterative formula can be expressed as: 
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were subscript i 1y   and i 1y   indicate the partial derivative with respect to these discrete variables 

and the subscript j and j+1 indicate the iteration step . Table 1 compares the first displacement peak 
results for three practical time-steps and the instable time step t limit for 0.4  , 1.0  , 0.5  , 
p=0.5 and 0.5  . 
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Table 1. First peak displacement and instability limit 

t  LAIER[1] ARGYRES[3] NEWMARK 
0.2s 0.5050 0.5050 0.5041 
0.1s 0.5220 0.5220 0.5217 
0.05s 0.5303 0.5303 0.5302 

Instability stable 0.6622s stable 
 
The results show that these two third-order algorithms present the same accuracy, but the cubic 
algorithm presents conditional numerical stability. 

Van der Pol equation 

The Van der Pol equation and its first time derivative are given by 
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where  , 0y  and 0  are parameters of the equation. Table 2 compares the first displacement peak 

results for three practical time-steps and the instable time step t limit for 1.5  , 0y 1 and 

0 1  . 

 
Table 2. First peak displacement and instability limit 

t  LAIER[1] ARGYRES[3] NEWMARK 
0.2s -0.3193 -0.3193 -0.3127 
0.1s -0.3193 -0.3193 -0.3177 
0.05s -0.3199 -0.3193 -0.3189 

Instability 3.773s 11.83s stable 
 
The results show that also these two third-order algorithms present the same accuracy, but just 
Newmark method presents unconditional numerical stability. 

Nonlinear pendulum 

Figure 1 depicts the nonlinear pendulum that has been extensively analyzed by Argyris and Mlejek 
[2]. The equation of motion and its first derivative are written as: 
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where m is the mass of the pendulum, c is the damping, k is the stiffness, 0N  is the pre-tension 

force of the string and f (t) is the excitation force. Table 3 compares the first displacement peak 

results for three practical time-steps and the instable time step t limit for m 500Kg , 0N 500N , 

a 1m , 7k 10 N / m  and    f t 50 1 cos(23.73t)  . 
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Table 3. First peak displacement and instability limit 

t  LAIER[1] ARGYRES[3] NEWMARK 
0.022648s 0.024645 0.024645 0.024624 
0.0052958s 0.024656 0.024656 0.024656 
0.0022648s 0.24656 0.024656 0.024656 
Instability stable 2.2648s stable 
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Figure 1.  Nonlinear pendulum 

 
The results shown in Table 3 indicate that the considered two third-order algorithms present the 
same accuracy, but the Newmark method and the algorithm developed by the author [1] present 
unconditional numerical stability. 

Lotka-Volterra equation 

The predator-prey Lotka-Volterra equation and its second and third time derivatives are given by 
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where k, a, l and b are positive constant. As the Lotka-Volterra is of first-order just the first 
Hermitian operator given by equation (1) is involved. Table 4 compares the first displacement peak 
results for three practical time-steps and the instable time step t limit for k=a=l=b=1. 
 

Table 4. First minimum peak for x function and instability limit 

t  LAIER[1] ARGYRES[3] NEWMARK 
0.01s 0.560288 10-6 0.560287 10-6 0.549775 10-6 
0.001s 0.560280 10-6 0.560280 10-6  0.560174 10-6 
0.0001s 0.560280 10-6 0.560280 10-6 0.560279 10-6 

Instability 0.157s 0.0952s 0.119s 
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The results shown in Table 4 indicate that the two third-order algorithms present again the same 
accuracy, but these three algorithms are not unconditional stable. 

Lorenz equation 

The atmospheric convection Lorenz model is governed by the equation 
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where  , r and b are constant. The second and third derivatives of equation (9) are given by 
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As the Lorenz is of first-order just the first Hermitian operator given by equation (1) is involved 
Table 5 compares the first displacement peak results for three practical time-steps and the instable 
time step t limit for 10.0  , r 28.0  and b 8 / 3 . 
 

Table 5. First minimum peak for x function and instability limit 
t  LAIER[1] ARGYRES[3] NEWMARK 

0.01s 0.203652 102 0.198015 102 0.135838 102 
0.001s 0.200112 102 0.198099 102  0.200108 102 
0.0001s 0.199781.102 0.198100 102 0.199781 102 

Instability stable 0.00510s 0.0976s 
 
The results presented in Table 5 show that the two third-order algorithms present quite similar 
accuracy, but in this case just the algorithm developed by the author is unconditionally stable. 
 

Conclusions 

The numerical applications show that the third-order algorithm developed by the author [1] and the 
cubic Hermitian developed by Argyris and Mlejek present as expected quite similar accuracy for 
refined mesh and little discrepancy for coarse mesh. The Newmark method also presents similar 
accuracy for refined mesh, but the discrepancy of the accuracy increase for coarse mesh. The time 
integration algorithm developed by the author is conditionally stable for Van der Pol and Lotka-
Volterra equations. On the other hand, the Newmark method is conditionally stable for Lotka-
Volterra and Lorenz equation. Finally, one has to note that the cubic Hermitian is conditionally 
stable for these five equations.     
 



6 
 

Acknowledgement  

The author acknowledges the support of this work by the São Paulo Research Foundation 
(FAPESP), under grant#2011/15731-5. 

References 

[1] Laier, J. E. (2011) Spectral analysis of  high-order Hermitian algorithm for structural dynamics , Applied 
Mathematical Modelling  35, 965–971. 

[2] Argyris, J. and Mlejek, H. P. (1991) Dynamics of Structures in Text on Computational Mechanics  North-Holland, 
Amsterdam. 

[3] Collatz, L. (1966) The Numerical Treatment of Differential Equations, 2nd edn, Springer´Verlag.Ruge, P.  (2001) 
Restrict Padè scheme in computational structural dynamics, Computer & Structures 79, 1913-1921. 

[4] Ruge, P.,  (2001) Restrict Padè scheme in computational structural dynamic,  Computer & Structures 79, 1913-
1921 


