
The implementation of multi-block lattice Boltzmann method on GPU
*Ya Zhang1, †Guang Pan1, and Qiaogao Huang1

1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China.

*Presenting author: zhangya9741@163.com
†Corresponding author: panguang601@163.com

Abstract

A straightforward implementation of multi-block lattice Boltzmann method (MB-LBM) on a
graphical processing unit (GPU) is presented to accelerate simulations of complex fluid flows. The
characteristics of MB-LBM algorithm are analyzed in detail. The algorithm is tested in terms of
accuracy and computational time with the benchmark cases of lid driven cavity flow and the flow
past a circular cylinder, and satisfactory results are obtained. The results show the performance on
GPU is consistently better than that on CPU, and the greater the amount of data, the larger the
acceleration ratio. Moreover, the arrangement of computational domain has significant effects on
the performance of GPU. These results demonstrate the great potential of GPU on MB-LBM,
especially for the calculation with large amounts of data.

Keywords: Multi-block, Lattice Boltzmann method, Graphical processing unit, Ratio of
acceleration.

Introduction

During recent decades, the lattice Boltzmann method (LBM) has developed into an alternative
method for simulating complex fluid flow [1]. LBM is based on the statistical physics and
originally came from the Boltzmann equation. A direct connection between the lattice Boltzmann
equation and Navier-Stokes equations has been established under the nearly incompressible
condition [2]. The fact that LBM evolves rather locally makes it more suitable for parallel
computing compared to the conventional computation method.

Graphical processing unit (GPU) is designed to process large graphics data sets for rendering tasks,
so it has exceeded the computation speed of PC-based central processing unit (CPU) by more than
one order of magnitude while being available for a comparable price. Another advantage for GPU
application is that Compute Unified Device Architecture (CUDA) provided by NVIDIA, a standard
C language extension for parallel application development on a GPU, reduces the development
threshold of GPU programming greatly. Due to the inherent parallelism of LBM, a significant
speedup of GPU-based computation on LBM has been reported in different areas. Fan et al. [3]
implemented the LBM simulations on a cluster of GPUs with message passing interface (MPI).
Tolke and Krafczyk [4] implemented a three-dimensional LBM and achieved near teraflop
computing on a single workstation. Zhou et al. [5] provided an efficient GPU implementation of
flows with curved boundaries, leading to nearly an 18-fold speed increase. Tubbs et al. [6]
implemented LBM for solving the shallow water equations and the advection dispersion equation
on GPU-based architectures, and the results indicate the promise of the GPU-accelerated LBM for
modeling mass transport phenomena in shallow water flows. GPU has tremendous potential to
accelerate LBM computation owing to the parallel nature of LBM.

The traditional LBM is often employed on uniform grids, which makes the evolution explicit and
the algorithm simple, but at the same time could increase the computational effort dramatically on
the road to high resolution. To solve this problem, a multi-block lattice Boltzmann method
(MB-LBM) is designed and applied over the flow area where relatively high resolution is needed.
As a useful tool of grid refinements in LBM, the multi-block technique has been investigated in
recent years. In 1998, Filippova et al. [7] introduced a local second order refinement scheme and
provided the theoretical foundation for multi-block techniques. In 2000, Lin and Lai [8] designed a
composite block-structured scheme by placing the fine grid blocks on needed area for the mesh
refinement. In 2002, Yu et al. [9] proposed a multi-block scheme, where the fine block is partially
overlapped at the interfacial lattices, increasing the model efficiency greatly. The model has been
successfully applied to various areas. Yu and Girimaji [10] extended this model to 3D turbulence
simulations. Y. Peng et al. [11] applied it in the immersed boundary lattice Boltzmann method with
multi-relaxation-time collision scheme. Liu et al. [12] validated the multi-block lattice Boltzmann
model coupled with the large eddy simulation model in transient shallow water flows simulation.
Farhat et al. [13][14] extended the single phase MB-LBM to the multiphase Gunstensen model, in
which the grid was free to migrate with the suspended phase, and validated a 3D migrating
multi-block model. Following from this, the present study aims to develop an efficient and
straightforward algorithm for the GPU implementation of MB-LBM, and test it in terms of accuracy
and computational time.

Multi-block lattice Boltzmann method

In the present study, the BGK lattice Boltzmann method is used with a two-dimensional
nine-velocity (D2Q9) discrete velocity model [2], as shown in Fig. 1. The lattice Boltzmann method
formulates as the following evolution equation:

 1(,) (,) (,) (,)eqf t t t f t f t f tα α α α αδ δ
τ
 + + = − − x e x x x (1)

0
1

2

3

4

56

7 8
Figure 1. Lattice pattern: D2Q9

where fα is the particle distribution functions representing the probability of particles at position

x and discrete velocity αe at time t ; tδ is the time step; τ is the single-relaxation-time,

depending on the kinematic viscosity ν , 3 0.5τ ν= + ; eα is the α th discrete velocity, the

discrete velocity model is

0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1

− − −
= − − −

e (2)

eqfα , the approximate of the Maxwell-Boltzmann equilibrium distribution function at low numbers,

is expressed as follow:

2 2

2 4 2

()1
2 2

eq
i

s s s

uf w
c c c
α α

α ρ
 ⋅ ⋅

= + + −

e u e u (3)

where wα is the weighting coefficient, valued by 0 4 / 9w = , 1 2 3 4 1/ 9w w w w= = = = and

5 6 7 8 1/ 36w w w w= = = = ; the sound speed is 1/ 3sc = ; ρ and u are the macroscopic density

and velocity, which can be calculated from the distribution function respectively by:

8 8

0 0

eqf fα α
α α

ρ
= =

= =∑ ∑ (4-1)

8 8

0 0

eqf fα α α α
α α

ρ
= =

= =∑ ∑u e e (4-2)

This paper uses the multi-block method proposed by Yu et al. [9], which satisfies the continuity of
mass, momentum and stresses across the interface. To illustrate the basic idea, a two-block system
consisting of a coarse block and a fine block is shown in Fig. 2.

M N

A B

Figure 2. Interfaces structure between two blocks

The ratio of the lattice space between coarse blocks and fine blocks m is defined as:

 /c f c fm x x m mδ δ= = (5)

where the subscript c refers to the coarse block while f refers to the fine block, cxδ and fxδ are

the lattice space, 1cm = and /f c fm x xδ δ= are the lattice space parameters. To maintain a

consistent viscosity across blocks, the relaxation time fτ on the fine block and cτ on the coarse

block have to satisfy the following equation:

 =0.5 (0.5)f f cmτ τ+ − (6)

The transfer of the post-collision distribution functions between different blocks happens after the
collision step. Since each interface grid consists of overlapping two sets of coarse and fine nodes,

the information of coarse boundary nodes can be obtained after fm steps of evolution on the fine

grid, where the post-collision distribution cfα for the coarse block is written as:

 , ,1 ()
1

c eq f f eq fc
f

f

f f m f fα α α α
τ
τ

−
= + −

−
 (7)

Similarly, when transferring the data from the coarse block to the fine block, one follows:

 , ,1
()

(1)
ff eq c c eq c

f c

f f f f
mα α α α

τ
τ
−

= + −
−

 (8)

As shown in Fig. 2, the line MN is the fine block boundary, while the line AB is the coarse block
boundary. The information on the nodes noted by solid symbol can be obtained through spatial
interpolation based on the information at the open nodes on the line MN.

To eliminate the possibility of spatial asymmetry caused by interpolations, a symmetric cubic spline
fitting is used to calculate the unknown nodes on the fine blocks [9], which is done by

3 3

1 1

1 1

() () () () ()i i i i i i i i

i i

f x a x x b x x c x x d x x
x x x

− −

− +

= − + − + − + −
≤ ≤

 (9)

where according to the continuity of the nodal condition of f and f ′ (the first order derivation

of f), and suitable end condition, the coefficients (, , ,)i i i ia b c d in Eq. (9) are computed as

follows:

1

1 1

6

6

6

6

i
i

i

i
i

i

i i i
i

i

i i i
i

i

Ma
h

Mb
h

f M hc
h

f M hd
h

−

− −

=

=

= −

= −

 (10)

where iM is the second order derivatives of if , following the equation

 1 1 1 10.5 2 0.5 3(2)i i i i i iM M M f f f− + − ++ + = − − (11)

The natural spline end condition is stipulated with 0 0nM M= = .

A three-point Lagrangian scheme is used in the temporal interpolation of the post-collision
distribution function on the interface grid at the specific time:

1 1

1 1
() ()f f k

i i k
k k k kk k

t tf t f t
t t

′

′=− =− ′′≠

 − = ∑ ∏
 −

 (12)

So the function for the nth evolution of the fine block is expressed as

 1 0 1() 0.5 1 () 1 1 () 0.5 1 ()f f f f
i i i i

f f f f f f

n n n n n nf t f t f t f t
m m m m m m−

= − − − + + +

 (13)

where the present time is 0
f

nt t
m

= + .

The flow chart of the computational sequence for the MB-LBM in the two-block system is shown in
Fig. 3.

Set initial values in all blocks

Stream in coarse blocks

Calculate macroscopic variables and
collision in coarse blocks

Spatial interpolation for boundary points in fine
blocks, and store them for temporal interpolation

Stream in fine blocks

Calculate macroscopic variables and
collision in coarse blocks

Temporal interpolation to obtain values on
boundaries of fine blocks

Transfer boundary information in fine blocks to coarse blocks;
Transfer the spatial interpolation values to fine blocks boundaries

cudaMemcpy to host, and output

end

i>=N

Stream in fine blocks

Calculate macroscopic variables and
collision in coarse blocks

No

Figure 3. The flow chart of the computational sequence for MB-LBM

In this paper the momentum-exchange method [15] is used to calculate the force exerted onto the
obstacle considering its simplicity. In order to differentiate the nodes in the computational domain,
node type is employed to donate the fluid node, boundary node of computational domain, boundary

node of blocks and solid node. If particles in the solid node (,)b i jx of the fine block, will move to

a fluid node along the direction αe in the next step, values (, ,)i j α should be stored in an array.

The force can be calculated by

 []
 (, ,)

1 () ()b b
All i j

f f t
m α α α α α

α

δ− +∑F = e x e x e (14)

GPU implementation

A graphical processing unit (GPU) is specifically designed to process large graphics data sets for
rendering tasks. As GPU has a number of processing cores, so besides graphic rendering tasks, it
also is used to implement other parallel computing tasks. In this work, the simulation is carried out
on a CPU platform of Intel Xeon(R) W3550, 3.07GHz) with RAM of 24.0 GB and a NVIDIA
GPUs device (Geforce 980ti), programming using CUDA (Compute Unified Device Architecture).

In the CUDA programing architecture, CPU is considered to be the host, while GPU is considered

to be the device. The code is split up into a CPU and GPU part, the latter is called kernel, compiled
by NVIDIA C-Compiler (NVCC). When a kernel function is launched with required parameters, the
number of blocks and the number of threads in each block (256 in this paper), it is executed by
these threads on a device. In one block, each thread is indexed by a thread identification. Threads
from different blocks cannot communicate, while threads from the same block are independent, but
can communicate via shared memory and have synchronize execution. A kernel is executed in a grid
of thread blocks indexed by a block identification. The grid terminates when all threads of a kernel
complete their execution, and the execution continues on the host until another kernel is launched.

The memory access of the kernel has a great influence on the implementation performance. The
registers are trace buffer on GPU, and can be accessed with nearly no time delay, but is rather small,
so excessive local variables used in kernel should be avoided. The global memory is a device
memory and is the largest memory device in GPU, but not as fast as the registers. In this work, each
node requires nearly 200 bytes of memory for double precision computation, so most of the data
will be stored in the global memory. Besides, there is a share memory for each multiprocessor,
allowing communication between threads, and can be accessed as fast as the registers. The constant
memory, which can also be fast accessed, is used to store the constants that are read only and are
accessed frequently.

The LBM code is highly parallelizable since it can be separated into two main steps, streaming and
collision [2]. In the collision step, the distribution functions of a certain node will not exchange with
its neighbor, and the post-collision function is given by

 1(,) (,) (,) (,)eqf t f t f t f tα α α ατ
 = − −

 x x x x (15)

The streaming step is related to the distribution functions of the surrounding nodes according to Eq.
(1) and Eq. (15). Considering the fact that misaligned read is faster than misaligned write[16], the
streaming is carried out with the following equation

 (,) (,)f t t f t tα α αδ δ+ = −x x e (16)

To increases the efficiency of data communication, the collision and the streaming step are
combined into one kernel to avoid repeated access of global memory for distribution functions.

For systems containing multi-level blocks, according to the flow chart in Fig. 3, the computation
can be expressed with a recursive function shown in Fig. 4.

void evolution(int level)
{

for (int i=0; i<m[level]; i++)
{

if (level == LEVEL)
return;

if (!(level == 0 || i == 0))
{

//temporal interpolation
}
//stream, calculate macroscopic variables and collision
//information exchange between the present level blocks
if (level != LEVEL-1)
{

//spatial interpolation to prepare for blocks, level+1
}
evolution(level+1);
if (level != 0 && i == m[level]-1)
{

//Transfer boundary information in blocks level+1 to level;
//Transfer the spatial interpolation values to level+1

}
}

}
Figure 4. Program of the recursive function for MB-LBM

Since there are always the same data types of variables needed to be record in each node, a struct
body, including pointers to node type, position, density, velocity, distribution functions and
post-collision distribution functions, is created to store variable information. With these pointers,
memory in host and device is allocated dynamics for the variables.

In the stage of the spatial interpolation, it is needed to obtain iM in Eq. (10) and Eq. (11). In serial

processing, the tridiagonal matrix in Eq. (11) is solved with the Thomas algorithm, which is almost
unfeasible in parallel algorithm. The cuSPARSE library presented by NVIDIA contains a set of
basic linear algebra subroutines used for handling sparse matrices in parallel mode. The function
cusparseDgtsv() is employed in this paper. It can be used by cusparseDgtsv(cusparseHandle_t
handle, int m, int n, const double *dl, double *d, double *du, double *B, int ldb), where handle is
the handle to the cuSPARSE library context; m is the size of the linear system (must be larger than

or equal to three); n is the columns of matrix B, which means iM for different variables can be

solve in a single call; array dl, d, du contain the lower, the main, the upper diagonal of the
tridiagonal linear system, respectively; B is the right-hand-side array, ldb is the leading dimension
of B. The solution will be written in array B before the function completes.

It is obvious that the spatial interpolation in parallel is much more complex than the temporal
interpolation, so it is suggested that the largest ratio of the lattice space between adjacent levels
should be placed on the finest level. And in this work, the arrangement of levels is expressed in
form of m1-…-mi-…-mn in coarse-fine order, where m1 is always 1, mi is the ratio of the lattice
space of level i to that of level i-1. So as mentioned, the arrangement of levels 1-2-3 is better than
1-3-2.

In this work, all the procedures but output are completed on the GPU directly to eliminate the
unnecessary copy between host and device. At the same time due to the fact that the atom function
atomicAdd() in the CUDA toolkit provided by NVIDIA can only be used for Integer and Long, the
parallel reduction is used to calculate the force in Eq. (14) after loading the position and direction.

Presentation of test cases and discussion

Lid driven cavity flow

The lid driven cavity flow has been extensively used as a benchmark problem to test the accuracy of
a numerical method. The computations are carried out using the multi-block computational domains,
whose schematic diagrams are shown in Fig. 5.

In all the arrangements, the finest blocks are placed on the areas of singularity points or changing
sharply. As shown in Fig. 5, the finest blocks is located in the two upper corner regions. In Fig. 5(a),
there are two levels of blocks and four separate blocks in the calculation. Block 1 and block 2
belong to the first level; block 3 and block 4 belong to the second level; the diagram in Fig. 5(b)
contains three levels and seven blocks, while block 1 belong to the first level, block 2 and block 3
belong to the second level, and block 4 to block 7 belong to the third level.

The simulation region is 128-128. The initial condition for density is unity and that for velocity is
zero. The upper wall velocity is U = 0.1. All the boundaries uses the moving boundary half-way
bounce-back scheme.

(a) (b)

Figure 5. Arrangements of blocks for the lid driven cavity flow

To assess the results, the solutions of Ref. [17] and Ref. [18] are used for comparison. The
dimensionless locations of the centers of the primary vortex, the lower left vortex and the lower
right vortex of present work and of previous literatures are listed in Table 1. As shown in Table 1,
all the results show a good agreement with previous researches. And for Re = 2000, different
arrangements of blocks appear identical results.

(a) Re = 100 (1-2) (b) Re = 1000 (1-4)

(c) Re = 2000 (1-2-2) (d) Re = 2000 (1-2-4)

(e) Re = 2000 (1-4-2)

Figure 6. Streamlines for the lid driven flow

Table 1 Comparison of the vortex centers with previous literatures [17][18]

Re Arrangement Primary vortex Lower left vortex Lower right vortex
100

Present 1-2 (Fig. 5(a)) (0.6142, 0.7402) (0.0354, 0.0394) (0.9370, 0.0669)
Ref. [17] (0.6172, 0.7344) (0.0313, 0.0391) (0.9453, 0.0625)

1000
Present 1-4 (Fig. 5(a)) (0.5276, 0.5669) (0.0866, 0.0787) (0.8504, 0.1181)

Ref. [17] (0.5313, 0.5625) (0.0859, 0.0781) (0.8594, 0.1094)

2000
Present 1-2-2 (Fig. 5(b)) (0.5238, 0.5555) (0.0873, 0.1032) (0.8413, 0.0992)

 1-2-4 (Fig. 5(b)) (0.5238, 0.5555) (0.0873, 0.1032) (0.8413, 0.0992)
 1-4-2 (Fig. 5(b)) (0.5238, 0.5555) (0.0873, 0.1032) (0.8413, 0.0992)

Ref. [18] (0.5250, 0.5500) (0.0875, 0.1063) (0.8375, 0.0938)

Flow past a circular cylinder

A flow past a circular cylinder is simulated to implement the parallel algorithm in simulation
domain that has more levels and blocks.

The arrangement of the computational domain is shown in Fig. 7. There are four levels of blocks in
the simulation. Block 1 to block 4 belong to the first level; block 5 and block 6 belong to level two;
block 7 to block 9 belong to level 3; block 10 belong to level 4, the finest level. The ratio of the
lattice space between adjacent levels is 1-2-2-2.

In this calculation, the cylinder diameter D is set to 6. The length of the simulation region is 320,
and the width is 128. The center of the cylinder is at (64, 64), which makes it located in the finest
block, as shown in Fig. 7. The slip boundary scheme is implemented on the top and bottom
boundaries. The standard bounce back scheme is used on the cylinder surface. The velocity and the
pressure scheme of Zou and He are applied on the inlet and the outlet boundaries, respectively,
where the far field velocity is U0=0.1 and the initial density is unity. The relaxation time for the first
level grid is computed by Re=100, based on the far field velocity and the diameter of the cylinder.

Drag coefficient, lift coefficient and Strouhal number are the benchmark dimensionless numbers for
the flow past a circular cylinder. The drag and the lift coefficients are calculated using the following

formulae, 2

2 D
D

FC
U Dρ

= and 2

2 L
L

FC
U Dρ

= , and the Strouhal number is defined as aDSt
U

= , where

LF the lift force, DF the drag force, D the cylinder diameter, a the frequency of

vortex-shedding, obtained by processing LF with Fast Fourier Transform.

1

2

3

4

5 6

7

8

9

10

Figure 7. Arrangement of blocks for the flow past a circular cylinder

Figure 8. Velocity contour for the flow past a circular cylinder

10 8

Figure 9. Vorticity contour for the flow past a circular cylinder

Table 3 Comparison of results at Re = 100 with previous literatures [19][20][21]
Author CD CL St

Silva [19] 1.39 - 0.16
Zhou [20] 1.428 0.315 0.172
Xu [21] 1.423 0.34 0.171

This work 1.381 0.304 0.168

The velocity contour for the flow past a circular cylinder is shown in Fig. 8. The instantaneous
vorticity contours of vortex shedding are plotted in Fig. 9. It can be seen clearly that the vorticity is
rather smooth across the block interface. This shows that the implementation of multi-block scheme
functions well for unsteady flow. Table 3 shows our numerical results compare well with the
previous results, despite little differences.

Assess the performance of MB-LBM code on GPU

The parameters of performance of MB-LBM on CPU and on GPU is shown in Table 2, including
the time spending for evolution of 104 steps (in second), the number of lattice updates per step in an
arrangement (LUPS), million lattice updates per second (MLUPS), and the acceleration ratio of
GPU to CPU. In general, LUPS represents the amount of data, and a large MLUPS means a high
data processing speed.

Table 2 Performance of CPU and GPU for 104 steps

Case Arrangement LUPS CPU GPU Acceleration
ratio Time MLUPS Time MLUPS

1 1-2 (Fig. 5(a)) 31267 205.66 1.52 64.52 4.85 3.19
2 1-4 (Fig. 5(a)) 145691 1083.28 1.34 86.63 16.82 12.50
3 1-2-2 (Fig. 5(b)) 300688 1894.23 1.59 245.59 12.24 7.71
4 1-2-4 (Fig. 5(b)) 2090912 19543.09 1.07 498.00 42.00 39.24
5 1-4-2 (Fig. 5(b)) 2326104 21736.04 1.07 659.12 35.29 33.00
6 1-2-2-2 (Fig. 7) 790392 5835.10 1.35 578.71 13.66 10.08

It can be seen from Table 2 that the ratio of acceleration is not a constant, and performance on GPU
is always better than that of CPU. To be specifically, as the amount of data increases, roughly the
speedup is more obvious. Besides, the arrangement of computational domain has great impact on
the performance of GPU. In case 2 and case 3, the resolution of upper corners is the same, but on
GPU the performance of case 2 is much better while with a smaller LUPS, so it is not recommended
to employ more levels for the same resolution. In addition, according to the performance of case 4
and case 5, considering the time consumed by spatial interpolation in MB-LBM, it is verified that
the largest ratio of the lattice space between adjacent levels should be placed on the finest level.

Conclusion

In this paper, a straightforward multi-block LBM parallel algorithm based on a single GPU has been
presented. The characteristics of MB-LBM algorithm are analyzed in detail. The benchmark cases
of the lid driven cavity flow and the flow past a circular cylinder are investigated as the test cases
for the GPU-based implementation, and satisfactory results are obtained. Performance on GPU is
always better than that of CPU, and the greater the amount of data, the larger the acceleration ratio.
And arrangement of computational domain has significant effects on the performance. The largest
acceleration ratio 39.24 are achieved by now, however that still leaves room for a large rise in
computation with large amounts of data.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (11502210, 51279165).

References

[1] Aidun, C. K. and Clausen, J. R. (2010) Lattice-Boltzmann method for complex flows, Annual review of fluid
mechanics 42, 439-472.

[2] Mohamad, A. A. (2011) Lattice Boltzmann method: fundamentals and engineering applications with computer codes,
Springer-Verlag, London, UK.

[3] Fan, Z., Qiu, F., Kaufman, A. and Yoakum-Stover, S. (2004) GPU cluster for high performance computing,
Proceedings of the 2004 ACM/IEEE conference on Supercomputing, 47.

[4] Tölke, J. and Krafczyk, M. (2008) TeraFLOP computing on a desktop PC with GPUs for 3D CFD, International
Journal of Computational Fluid Dynamics 22, 443-456.

[5] Zhou, H., Mo, G., Wu, F., Zhao, J., Rui, M. and Cen, K. (2012) GPU implementation of lattice Boltzmann method for
flows with curved boundaries, Computer Methods in Applied Mechanics and Engineering 225, 65-73.

[6] Tubbs, K. R. and Tsai, F. T. C. (2011) GPU accelerated lattice Boltzmann model for shallow water flow and mass
transport, International Journal for Numerical Methods in Engineering 86, 316-334.

[7] Filippova, O. and Hänel, D. (1998) Grid refinement for lattice-BGK models, Journal of Computational Physics 147,
219-228.

[8] Lin, C. L. and Lai, Y. G. (2000) Lattice Boltzmann method on composite grids, Physical Review E 62, 2219-2225.
[9] Yu, D., Mei, R. and Shyy, W. (2002) A multi‐block lattice Boltzmann method for viscous fluid flows, International

journal for numerical methods in fluids 39, 99-120.
[10]Yu, D. and Girimaji, S. S. (2006) Multi-block lattice Boltzmann method: extension to 3D and validation in turbulence,

Physica A: Statistical Mechanics and its Applications 362, 118-124.
[11] Peng, Y., Shu, C., Chew, Y. T. Niu, X. D. and Lu, X. Y. (2006) Application of multi-block approach in the immersed

boundary–lattice Boltzmann method for viscous fluid flows, Journal of Computational Physics 218, 460-478.
[12] Liu, H., Zhou, J. G. and Burrows, R. (2010) Lattice Boltzmann simulations of the transient shallow water flows,

Advances in Water Resources 33, 387-396.
[13] Farhat, H. and Lee, J. S. Fundamentals of migrating multi-block lattice Boltzmann model for immiscible mixtures in

2D geometries, International Journal of Multiphase Flow 36, 769-779.
[14] Farhat, H., Choi, W. and Lee, J. S. (2010) Migrating multi-block lattice Boltzmann model for immiscible mixtures:

3D algorithm development and validation, Computers & Fluids 39, 1284-1295.
[15] Mei, R., Shyy, W. and Yu, D. and Luo, S. L. (1999) Force Evaluation in the Lattice Boltzmann Method, APS Division

of Fluid Dynamics Meeting Abstracts 1.
[16] Obrecht, C., Kuznik, F., Tourancheau, B. and Roux, J-J. (2011) A new approach to the lattice Boltzmann method for

graphics processing units, Computers and Mathematics with Applications 61, 3628-3638.
[17] Ghia, U., Ghia, K. N. and Shin, C. T. (1982) High-Re solutions for incompressible flow using the Navier-Stokes

equations and a multigrid method, Journal of computational physics 48, 387-411.
[18] Vanka, S. P. (1986) Block-implicit multigrid solution of Navier-Stokes equations in primitive variables, Journal of

Computational Physics 65, 138-158.
[19] Silva, A. L. E., Silveira-Neto, A. and Damasceno, J. J. R. (2003) Numerical simulation of two-dimensional flows

over a circular cylinder using the immersed boundary method, Journal of Computational Physics 189, 351-370.
[20] Zhou, H., Mo, G., Wu, F., Zhao, J., Rui, M. and Cen, K. GPU implementation of lattice Boltzmann method for flows

with curved boundaries, Computer Methods in Applied Mechanics and Engineering 225, 65-73.
[21] Xu, S. and Wang, Z. J. (2006) An immersed interface method for simulating the interaction of a fluid with moving

boundaries, Journal of Computational Physics 216, 454-493.

	*Ya Zhang1, †Guang Pan1, and Qiaogao Huang1
	Abstract
	Keywords: Multi-block, Lattice Boltzmann method, Graphical processing unit, Ratio of acceleration.

	Introduction
	Multi-block lattice Boltzmann method
	GPU implementation
	Presentation of test cases and discussion
	Lid driven cavity flow
	Flow past a circular cylinder
	Assess the performance of MB-LBM code on GPU

	Conclusion
	Acknowledgments
	References

