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Abstract 
Modeling and prediction of criteria pollutants over the urban areas is essential for the 
formulation and improvisation of urban air quality management strategies. Various statistical 
techniques have been employed worldwide for accurate prediction of the air pollutants. This 
study focuses on the analysis and prediction of the criteria pollutants over a tropical urban 
area (Durgapur, 23̊ 30′ 34.58″ N and 87̊ 21′ 03.42″ E) performed by using statistical models 
viz. multiple linear regression (MLR) and principal component regression (PCR). Multiple 
linear regression analyses have been performed using the original variables and principal 
components (PCs) as the inputs. On the basis of the performance indicators, MLR model is 
found to perform better than the PCR in most cases. The R2 values obtained by MLR are 
0.962, 0.945, 0.898, 0.937, 0.603, 0.874, 0.871, 0.837, 0.858, 0.868, 0.842 and 0.825 for 
PM10, PM2.5, sulphur dioxide, nitrogen dioxide, carbon monoxide, ammonia, ozone, benzene, 
benz(a)pyrene, arsenic, lead and nickel respectively which are greater than the respective R2 
values obtained by PCR model. Results of the two models reveal that use of PCA could not 
enhance the MLR performance. The predictive equations proposed by the statistical models 
suggest that the meteorological parameters (temperature, relative humidity, wind speed and 
cloud cover) have significant influence on the concentration of the criteria pollutants. 
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1. Introduction 
Escalating air pollution and deteriorating air quality status of urban areas is a matter of 
concern worldwide. In this era of rapid urbanization and industrialization, air pollutants 
containing toxic substances like particulate matters, heavy metals, polycyclic hydrocarbons 
(PAH), volatile organic compound (VOC) and other  gaseous substances (like SO2, NO2, CO, 
NH3, tropospheric O3 etc.) have an increasing impact on urban air quality. Actually, air 
pollution risk is a function of the hazard of the pollutant and exposure to the pollutant. Carbon 
monoxide, lead, nitrogen dioxide, ozone, particulate matter, and sulfur dioxide have identified 
as criteria pollutants by Clean Air Act (CAA) of 1970. Central Pollution Control Board 
(CPCB) has identified 12 health based parameters [namely particulate matters (PM10 & 
PM2.5), benzene, benzo(a)pyrene, nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon 
monoxide (CO), ammonia (NH3),ozone (O3), lead (Pb), nickel (Ni) and arsenic (As)] for 
assessing the air quality status across the country in 2009 under the provision of Air 
(Prevention & Control of Pollution) Act, 1981. 



The complexities and difficulties in continuous measurement of air pollutant concentrations 
have led to the development of modeling techniques which enable the researchers to predict 
the pollutant concentration with acceptable accuracy [1]. Accurate knowledge of pollutant 
sources, emission inventories and proper description of the physico - chemical processes are 
essential for minimizing biasness and errors of the outputs of the deterministic models. These 
are quick and easy empirical techniques for predicting the ambient air pollutant concentration 
as a function of several input parameters. In air quality modeling, one of the most common 
models available for predicting outdoor and indoor air pollutant concentrations are statistical 
regression methods [2]. Statistical models are suitable for the description of the complex site-
specific relationship between air pollutants and explanatory variables, and they often make 
predictions with a higher accuracy than mechanistic models [3]. Multiple linear regression 
(MLR) is a widely used multivariate statistical technique for expressing the dependence of a 
response variable on several independent (predictor) variables. Awang et al. [4] compared the 
multivariate methods (MLR and PCR) for predicting the surface O3 concentration during 
daytime, nighttime and critical conversion time in Shah Alam, Malaysia. The concentration 
PM10, PM2.5, CO and CO2 concentrations and meteorological variables (wind speed, air 
temperature, and relative humidity) were employed by Elbayoumi et al. [5] for predicting the 
annual and seasonal indoor concentration of PM10 and PM2.5 at Gaza Strip (Palestine) using 
multivariate statistical methods. Luvsan et al. [6] used multiple linear regression models for 
exploring the association of concentration of SO2 with temperature, relative humidity and 
wind speed in Mongolia. Sayegh et al.[7] employed several approaches including linear, non-
linear, and machine learning methods are evaluated for the prediction of urban PM10 
concentrations in the City   of Makkah, Saudi Arabia. 

In the present work, we predict the concentration of various criteria pollutants by using 
multiple linear regression (MLR) and principal component regression (PCR) models, the 
performance of both the statistical models is evaluated in terms of the performance indicators. 
Deterministic models require a large number of input data which are difficult to provide 
whereas statistical models are relatively simple and sufficiently reliable tools for predicting 
the concentration of different air pollutants. Moreover, application of multivariate statistical 
methods for the prediction of the air pollutants is a new piece of work over this eastern part of 
India. 
 
2. Method 

2.1 Description of the study area 
Durgapur (chosen urban area) is situated in the Burdwan district of West Bengal, India. It is 
located on the bank of River Damodar. This area is covered with Red and Yellow Ultisols soil 
and the topography of this area is undulating, with an average elevation of 65 m MSL. This 
area experiences a transitional climate between the tropical wet and dry climate and the more 
humid subtropical climate. 
 
2.2 Data used 
The data of concentration of all the criteria pollutants such as ammonia, arsenic, benzene, 
benzo(α)pyrene, carbon monoxide, lead, nickel, nitrogen dioxide, ozone, sulphur dioxide, 
PM10 and PM2.5 at Bidhannagar, India (23̊ 30′ 34.58″ N and 87̊ 21′ 03.42″ E) were collected 
for the duration of June, 2013 to May, 2015 from the archived data set of WBPCB 
(Bidhannagar unit of Durgapur). These parameters are monitored twice a week at this location 
by WBPCB [www.wbpcb.gov.in]. The data of meteorological parameters [Temperature (T), 
relative humidity (RH), wind speed (WS) and cloud cover (CC) are collected from the NOAA 
Air Resources Laboratory (ARL) website. (http://ready.arl.noaa.gov/READYamet.php). 

http://ready.arl.noaa.gov/READYamet.php


The air pollutants and the meteorological parameters data were divided into two sets: model 
development set and the model validation set. The model development set comprises of the 24 
average values of criteria air pollutants and meteorological parameters recorded from June, 
2013 to December, 2014 while the data set of January, 2015 to May, 2015 is used for data 
validation. The accuracy and errors in the MLR and PCR models were evaluated in terms of 
performance indicators (PIs) 

2.3 Statistical analysis 

Data analysis was carried using the statistical software XLSTAT 2015. Step wise multiple 
regression (MLR) and Principle Component Regression (PCR) analyses have been used for 
finding the predictive equations of the criteria pollutants. 
 
2.3.1 Principal component analysis (PCA) 
Among multivariate techniques, Principal Components Analysis (PCA) is designed to classify 
variables based on their correlations with each other. The  goal  of  PCA  and  other  factor  
analysis procedures,  is  to  consolidate  a  large  number  of  observed  variables  into  a  
smaller  number  of  factors (components) that can be more readily interpreted as these 
underlying processes. It is often used as an exploratory tool to identify the major sources of air 
pollutant emissions [8] [9]. For physical interpretation of the components, loadings of 
variables on the component are estimated. Loading represents the degree and direction of 
relationship of the variables with a factor. An analysis of the PC loadings on the chosen 
variables allows the identification of the PCs as pollution sources affecting the data. The 
number of factors (PCs) is selected such that the cumulative percentage variance explained by 
all the chosen factors is more than 70%. As the normalized variables each carry one unit of 
variance, so the factors with eigen value more than 1 are chosen for the study. The factors 
with eigen values less than one are discarded as they are assumed to contain less information 
[10]. To undertake PCA, the XLSTAT 2015 statistical software was used, specifying the 
principal components method with varimax rotation  [11].  The rotation of the component axis 
is performed so that components are clearly defined by high loadings for some variables and 
low loadings for others, facilitating the interpretation in terms of original variables. 

The principal components of the predictor variables are obtained using a data reduction 
technique by means of finding linear combinations of the original variables. In general, PCs 
are expressed by the following equation 

PCi = A1i Vi + A2iV2+……..+ AniVn ………………...…………….. (1) 

where, 

PCi is principal component i and 

Ani is the loading (correlation coefficient) of the original variable Vn. 

As the scores of high loading components with an eigen value greater than or equal to 1 
account for most of the variations in the data set, it is ideal to use them as independent or 
predictor variables in regression analysis. Thus, principal component regression (PCR) 
establishes relationship between dependent variables and the selected PCs of the independent 
variables [12]. 

2.3.2 Multiple Linear Regression (MLR) 

Multiple linear regression attempts to model the relationship between two or more 
explanatory variables (independent variables) and a response variable (dependent variable) by 
fitting a linear equation to observed data. This multivariate statistical technique finds wide 
application in the field of atmospheric science, especially air pollution studies. The MLR 



technique has the capability of exploring the contribution of selected variables to chosen air 
pollutant concentration. The general equation of MLR is expressed as [12] 

y = b0 +  + ξ ….……….…………….…...….…………(2) 

Where,   
bi is the regression coefficient,  
xi is the independent variable, and  
ξ is the stochastic error associated with the regressions. 

 
2.3.3 Principal Component Regression (PCR) 

Principal Component Regression (PCR) is a combination of Principal Component Analysis 
(PCA) and Multiple Linear Regression (MLR). The PCs obtained in PCA are used as the 
inputs in MLR. The selected variables with high loadings from PCA ensure the inclusion of 
the majority of the original variances in the statistical model and they are ideal for use as 
independent variables in MLR [12]. The use of PCs as the independent variables of MLR 
reduces the problem of multicolinearity. 

2.3.4 Performance Indicators (PIs) 

The performance of MLR and PCR models are assessed on the basis of the performance 
indicators (PIs). Good prediction models should have minimal errors (closer to 0 for NAE and 
RMSE) and high accuracy (closer to 1 for IA, PA, and R2). The following PIs are used in this 
study - 

• Normalized Absolute error (NAE) - It measures the average difference between 
predicted and observed values in all cases divided by observed values [5] and is expressed as: 

NAE=   ………………….……………………(3) 

where n is the sample size, Pi is the predicted concentration of the criteria pollutant and  Oi is 
the observed value of the pollutant concentration. 

• Root Mean Square Error (RMSE) - It measures the success of numerical prediction. 

RMSE is calculated by the equation [13] [14] 

RMSE=  …………………………..….. (4) 

where n is the number of sample, Oi is the observed  concentrations of the pollutants  and Pi is 
the predicted concentration of the pollutants. 

• Prediction accuracy (PA) - The prediction accuracy is computed using by the 
following equation [15]: 

PA=   ……………………………………. (5) 

where n is the number of sample, Oi is the observed  concentrations of the pollutants  and Pi is 
the predicted concentration of the pollutants. 

• Index of agreement (IA) - a measure of accuracy, was calculated using Equation (6) 
[16]. 

IA= ……...……………………… (6) 



where n is the number of sample, Oi is the observed  concentrations of the pollutants  and Pi is 
the predicted concentration of the pollutants 

• Coefficient of determination (R2) - The coefficient of determination explains how 
much the variability in the predicted data can explain by the fact that they are related to the 
observed values. R2 is expressed by the following equation [15] : 

R2= …………..…...……...................... (7) 

where n is the number of sample, Oi is the observed concentrations of the pollutants and Pi is 
the predicted concentration of the pollutants,  is the average of predicted value ,  is the 
average of observed values, Spred is a standard deviation of the predicted pollutant 
concentration, Sobs is a standard deviation of the observed pollutant concentration. 

 

3. Result and discussion 

3.1 MLR model development 
MLR modeling (stepwise method) has been performed for finding the predictive equations of 
the criteria pollutants with the regression assumptions approximately satisfied. During this 
statistical analysis, the distribution of residuals was approximately with zero mean and 
constant variance. Variance Inflation Factor (VIF) was mostly below 10 except on very few 
occasions when the VIF value exceeded 10. Therefore, the MLR predictor variables have 
negligible collinearity problem. 
 
3.2 PCR model development 
PCA was applied for variable reduction and for providing most relevant variable for 
understanding the pollutant variation. Varimax rotation was applied in PCA for maximizing 
the loading of a predictor variable on one component. The adequacy of input data for the PCA 
was assessed using the Kaiser–Meyer–Olkin (KMO) test. The results obtained from 
application of KMO test on the input data set were more than 0.5 which indicated that the 
input data set were sufficient for PCA. 
Before extraction using PCA, 16 linear components (twelve criteria pollutants, temperature, 
humidity, cloud cover and wind speed) were used. After performing PCA, three linear factors 
were considered as principal components (PCs) on the basis of their eigen values. In PCA, the 
eigen value provides the amount of variation explained by each PC. As the normalized 
variables each carry one unit of variance, the factors with eigen value more than 1 were 
chosen for the study. The factors with eigen values less than one are discarded as they provide 
less information [10]. Occasionally, eigen values smaller than unity are considered as they are 
very close to one [17].The variability of PCs obtained after varimax rotation are summarized 
in Table 1.The obtained PCs are used as the independent variables (explanatory variables) and 
the original criteria pollutant as the dependent variables in stepwise multiple linear regression 
analysis in PCR model. The use of PCs as input in MLR is intended to reduce the complexity 
and multicollinearity problems of the models.  
 

 

 

 

 



Table 1. Total variance for different criteria pollutants after varimax rotation 

Sl.No. Parameter Components Eigen value Variability (%) Cumulative % 
1 PM10 PC1 8.880 35.416 35.416 

  
PC2 1.938 15.687 51.103 

  
PC3 1.064 23.157 74.260 

2 PM2.5 PC1 8.962 34.053 34.053 

  
PC2 1.933 15.327 49.379 

  
PC3 1.094 25.556 74.935 

3 Sulphur dioxide PC1 8.960 29.705 29.705 

  
PC2 1.959 14.692 44.397 

  
PC3 1.091 30.666 75.063 

4 Nitrogen dioxide PC1 8.922 32.114 32.114 

  
PC2 1.903 15.527 47.641 

  
PC3 1.087 26.808 74.449 

5 Carbon monoxide PC1 9.596 33.732 33.732 

  
PC2 1.550 31.157 64.889 

  
PC3 1.031 11.214 76.104 

6 Ammonia PC1 9.054 32.690 32.690 

  
PC2 1.897 15.845 48.535 

  
PC3 1.067 26.579 75.114 

7 Ozone PC1 9.115 30.682 30.682 

  
PC2 1.848 15.140 45.822 

  
PC3 1.110 29.638 75.460 

8 Benzene PC1 9.128 40.932 40.932 

  
PC2 1.960 22.655 63.588 

  
PC3 0.941 11.591 75.178 

9 Benz(a)Pyrene PC1 9.162 39.499 39.499 

  
PC2 1.951 23.602 63.101 

  
PC3 0.999 12.597 75.699 

10 Arsenic PC1 8.962 33.076 33.076 

  
PC2 1.952 15.137 48.213 

  
PC3 1.090 26.814 75.027 

11 Lead PC1 9.434 31.759 31.759 

  
PC2 1.620 12.760 44.520 

  
PC3 1.103 31.461 75.980 

12 Nickel PC1 9.018 33.232 33.232 

  
PC2 1.959 15.636 48.868 

    PC3 1.097 26.593 75.461 
 

 

3.3 Comparison of MLR and PCR models  

MLR and PCR models provide an estimate of 24 hour average concentration of all the criteria 
pollutants (Table 2). 
 

 
 
 



Table 2. Summary of models of all the criteria pollutants using Multiple Linear 
Regression (MLR) and Principal Component Regression (PCR) 

 

Sl.No. Parameter Method R2 Model 

1 PM10 MLR 0.962 PM10 = 0.135+4.138*As + 17.633*BAP + 1.788*Ni + 1.156*PM2.5 

  
PCR 0.918 PM10 = 102.688 + 23.684*PC1 + 17.671PC2 + 35.397*PC3 

2 PM2.5 MLR 0.945 
PM2.5 = 6.22 - 4.01*BAP -0.13*O3 + 0.529*PM10 + 1.745*SO2 - 

2.455*WS 

  
PCR 0.852 PM2.5 = 59.280 + 11.535*PC1 + 12.138*PC2 + 18.645*PC3 

3 
Sulphur dioxide 

(SO2) MLR 0.898 
SO2  = 1.184 + 0.093*NH3 - 0.283*As +3.553*Pb + 0.108*NO2 - 

0.042*O3+ 0.018*PM2.5 

  
PCR 0.779 SO2 = 8.22 + 1.01*PC1 + 0.746*PC2 + 1.231*PC3 

4 
Nitrogen dioxide 

(NO2) MLR 0.937 NO2 = 28.993 - 20.994*CO + 0.298*O3 + 3.837*SO2 - 0.723*RH 

  
PCR 0.888 NO2 = 53.871 + 9.939*PC1 +1.281*PC2 +  11.993*PC3 

5 
Carbon 

monoxide (CO) MLR 0.603 CO = 0.743 + 0.498*Pb - 0.005*Ni - 0.004*T 

  
PCR 0.439 CO = 0.665 + 0.017*PC2 + 0.046*PC3 

6 Ammonia (NH3) MLR 0.874 
NH3 = 3.957 + 1.039*As - 2.153*C6H6 + 7.971*CO - 17.578*Pb + 

0.410*Ni +0.142*O3 + 1.085*SO2 

  
PCR 0.799 NH3 = 25.773 + 2.498*PC1 + 4.244*PC3 

7 Ozone (O3) MLR 0.871 O3 = 14.02 + 1.255*NH3 + 4.316*As + 0.659*NO2 -4.083*SO2 - 0.066*CC 

  
PCR 0.77 O3 = 53.433 + 7.695*PC1 - 1.579*PC2 + 12.798*PC3 

8 Benzene (C6H6) MLR 0.837 C6H6 = 1.093 + 0.536*BAP - 0.447*CO + 0.002*PM10 

  
PCR 0.698 C6H6 = 1.352 + 0.229*PC1 + 0.21*PC2 

9 
Benzo(a)pyrene 

(BAP) MLR 0.858 BAP = -0.643 + 0.067*As + 0.755*C6H6 + 0.003*PM10 - 0.038*SO2 

  
PCR 0.71 BAP = 0.579 + 0.265*PC1 +0.318*PC2 

10 Arsenic (As) MLR 0.868 
As = -0.306 + 0.05*NH3 + 0.538*BAP - 2.130*CO + 3.853*Pb - 0.086*Ni 

+ 0.026*O3 + 0.006*PM10 + 0.106*WS 

  
PCR 0.796 As = 2.000 + 0.674*PC1 +0.114*PC2 + 0.695*PC3 

11 Lead (Pb) MLR 0.842 
Pb = -0.457 - 0.009*NH3 + 0.05*As - 0.054*BAP + 0.646*CO +0.015*Ni 

+ 0.001*PM10 + 0.01*SO2 +0.007*RH - 0.01*WS 

  
PCR 0.59 Pb = 0.163 + 0.076*PC2 + 0.056*PC3 

12 Nickel (Ni) MLR 0.825 
Ni = 2.925 + 0.205*NH3 - 0.949*As - 9.310*CO + 14.681*Pb + 0.049*O3 

+ 0.037*PM10 

  
PCR 0.749 Ni = 8.814 + 1.769*PC1 + 1.158*PC2 + 2.197*PC3 

* Temperature (T), relative humidity (RH), wind speed (WS) and cloud cover (CC) 

The MLR models were found to perform better than the corresponding PCR models as the R2 

values of the MLR models are higher than those of PCR models (Table 2). The predictive 
equations suggested by the statistical models suggest that meteorological factors (temperature, 
relative humidity, cloud cover and wind speed) play an important role in the prediction of 
concentration of the criteria pollutants. For example, cloud cover is negatively associated with 
ozone concentration in the predictive equation proposed by the MLR model which is in 
agreement with the mechanism of photochemical formation of tropospheric ozone. In general, 
high wind speed flushes out the air pollutants near the earth’s surface thereby leading to lower 
concentration of ground level air pollutants. Such a result is reflected in the predictive 
equations of the MLR model. The PCR has more degrees of freedom and offers variable 
combinations for the principal components in choosing multiple components but the use of 
PCs as the inputs in the MLR could not improve the performance of the model. Actually, the 
PCA is an unsupervised dimension reduction methodology which does not consider the 
correlation among the dependent and independent variables. This might be a reason for the 



failure of the PCR model. Elbayoumi et al. [5] also concluded that the use of PCR could not 
improve the accuracy in predicting indoor PM10 and PM2.5 in the Gaza Strip (Palestine) over 
MLR. Awang et al. [4] also reported the optimal performance of MLR model for daytime 
ground level ozone in terms of normalized absolute error, index of agreement, prediction 
accuracy, and coefficient of determination (R2). The R2 for the correlation between the 
observed and the predicted concentration of the criteria pollutants for MLR and PCR models 
are shown in Figures 1 to 4. The performances of the two models are further compared on the 
basis of the performance indicators namely normalized absolute error (NAE), root mean 
square error (RMSE), prediction accuracy (PA), index of agreement (IA) and coefficient of 
determination (R2) (Table 3). Good prediction models should have minimal errors (closer to 0 for 
NAE and RMSE) and high accuracy (closer to 1 for IA, PA, and R2). On the basis of this 
principle, MLR models for prediction of air pollutants are found to give better performance 
than the corresponding PCR model. 
 
 
 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1. Scatter plots of observed and predicted values of (a) PM10 by MLR method, (b) 
PM10 by PCR method, (c) PM2.5 by MLR method, (d) PM2.5 by PCR method 
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Figure 2. Scatter plots of observed and predicted values of (a) Lead (Pb) by MLR 

method, (b) Lead (Pb) by PCR method, (c) Nickel (Ni) by MLR method, (d) Nickel (Ni) 
by PCR method, (e) Arsenic (As) by MLR method and (f) Arsenic (As) by PCR method 
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Figure 3. Scatter plots of observed and predicted values of (a) NO2 by MLR method, 

(b)NO2 by PCR method, (c) SO2 by MLR method, (d) SO2 by PCR method, (e) NH3 by 
MLR method , (f) NH3 by PCR method, (g) CO by MLR method, (h) CO by PCR 

method, (i) O3 by MLR method  and (j) O3 by PCR method 
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Figure 4. Scatter plots of observed and predicted values of (a) Benzene by MLR method, 
(b)Benzene by PCR method, (c) Benzo(a)pyrene by MLR method and (d) 

Benzo(a)pyrene by PCR method 
 

It appears from Table 3 that the error indicators (NAE and RMSE) are minimum and accuracy 
indicators (IA, PA and R2) are maximum in case of each criteria pollutant by using MLR 
model (except Benzene and Arsenic). This observation suggests that the physico-chemical 
characteristics and the interaction of Benzene and Arsenic with other substances in the 
atmosphere should be explored for understanding these outcomes of these statistical models. 
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Table 3. Summary of performance indicators (PIs) of the models 
 

 
 
4. Conclusion 

In this study, multiple linear regression analyses have been performed using the original 
variables and principal components (PCs) as the inputs. MLR can encounter the complexity of 
multicollinearity as the environmental variables are correlated to each other. MLR using the 
PCs as the inputs is known as principal component regression (PCR) and the use of this 
technique is expected to reduce the problem of multicollinearity. Both models provide an 
estimate of 24 hour average concentration of all the criteria pollutants. On the basis of the 
performance indicators, the MLR model was found to perform better than the PCR in most 
cases (except Benzene and Arsenic). Analysis of the physico - chemical properties and mode 
of interaction of Benzene and Arsenic with other substances present in the ambient 

Sl.No. Parameters Method NAE RMSE IA PA R2 

1 PM10 MLR 0.068 8.981 0.971 0.823 0.902 

  

PCR 0.097 12.126 0.934 0.728 0.859 

2 PM2.5 MLR 0.117 9.8 0.924 0.708 0.875 

  

PCR 0.254 19.718 0.725 0.451 0.763 

3 Sulphur dioxide MLR 0.054 0.613 0.941 0.938 0.764 

  

PCR 0.076 0.799 0.891 0.693 0.789 

4 Nitrogen dioxide MLR 0.068 4.634 0.915 0.765 0.748 

  

PCR 0.076 4.889 0.902 0.674 0.748 

5 Carbon monoxide MLR 0.076 0.057 0.635 0.181 0.423 

  

PCR 0.088 0.063 0.643 0.438 0.732 

6 Ammonia MLR 0.075 2.59 0.839 0.557 0.576 

  

PCR 0.130 3.752 0.678 0.34 0.504 

7 Ozone MLR 0.102 6.593 0.744 0.558 0.362 

  

PCR 0.202 11.842 0.488 0.779 0.176 

8 Benzene MLR 0.115 0.219 0.645 0.400 0.32 

  

PCR 0.034 0.157 0.762 0.373 0.453 

9 Benz(a)Pyrene MLR       1.326 0.361 0.529 0.702 0.278 

  

PCR 1.899 0.469 0.428 0.955 0.283 

10 Arsenic MLR 0.205 0.511 0.605 0.433 0.141 

  

PCR 0.170 0.415 0.784 0.685 0.488 

11 Lead MLR 0.379 0.062 0.52 0.124 0.251 

  

PCR 0.484 0.074 0.448 0.100 0.196 

12 Nickel MLR 0.138 1.863 0.670 0.375 0.312 

    PCR 0.178 2.092 0.690 0.721 0.344 



environment may further clarify the characteristics of these two criteria pollutants. 
Meteorological parameters, particularly temperature, relative humidity and cloud cover are 
found to influence the concentration of the air pollutants over that region. The use of 
characteristics of boundary layer processes and traffic may further improve the accuracy of 
prediction of the criteria pollutants over urban areas. 
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