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ABSTRACT

In the present work a novel non-body conforming mesh method, termed as the moving immersed
boundary method, is proposed for the strongly coupled fluid-structure interaction. The immersed
boundary method enables solids of complex shape to move arbitrarily in an incompressible viscous
fluid, without fitting the solid boundary motion with dynamic meshes. A boundary force is usually
employed to impose the no-slip boundary condition at the solid surface. In the novel method, an
additional equation is derived to compute the boundary force implicitly. The coefficient matrix is for-
mulated to be symmetric and positive-definite, so that the conjugate gradient method can solve the
resulting system very efficiently. The current immersed boundary solver is integrated into the fluid
projection method as another operator splitting. Finally an efficient fixed point iteration scheme is
constructed for the strongly coupled fluid-structure interaction.

Keywords: Immersed boundary method, Fluid-structure interaction, Strongly coupled algorithm,
Projection method, Fractional step method.

Introduction

The fluid-structure interaction (FSI) is of great importance in many scientific and engineering fields.
The difficulties of its numerical simulation lie in the facts that the interaction interface is often compli-
cated, time-dependent and the two physical domains are strongly coupled. The FSI problem has been
extensively studied in the past with body-conforming mesh methods, such as the arbitrary Lagrangian-
Eulerian (ALE) method, where the mesh is deformed or renewed in order to fit the novel interface
(e.g. [1]). This procedure however is usually time-consuming and it is very difficult to maintain the
mesh quality when solids undergo large displacements.

The immersed boundary method (IBM) emerged in 1970s by the work of Peskin [8] as an effective
tool to circumvent the dynamic mesh issues. A boundary force is introduced to the fluid momentum
equation to account for the solid effects, hence the fluid equations are solved on a fixed Eulerian
grid. The original method is developed for the simulation of blood flow over an elastic beating heart.
Its direct extension to rigid boundary poses a lot of difficulties, since the stiffness value approaches
infinity. The time step is also kept very small in order to maintain the stability. This method has been
successfully extended to moving rigid bodies by the work of Uhlmann [9] by using the direct forcing
concept of [3]. No artificial constants and additional time constraint are introduced for the rigid body
formulation. However, fully explicit schemes were adopted for the force evaluation and the interface
coupling in [9]. Consequently, the no-slip boundary condition is never satisfied and the calculation
will not be stable when the solid density is smaller or even close to the fluid density (ρs/ρ f . 1.05 for



circular disks as reported in [9]).

Therefore, implicit schemes should be considered for obtaining accurate and stable results. In this
work we extend the implicit immersed boundary method of [2] to two-way fluid-structure interactions
in the next section. We will demonstrate the stability and the accuracy of present scheme in the
numerical examples.

Numerical method

Governing equations

In the present study, we consider the rigid body motion in an incompressible fluid. The fluid-structure
interaction problem is illustrated in Figure 1, where the fluid and the rigid body occupy the domain
Ω f and Ωs respectively. The interaction takes place at the their common boundary ∂Ωi = Ω f ∩ Ωs.
The whole system is subjected to the gravitational acceleration g.
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Figure 1: Sketch of the fluid-structure interaction problem.

The fluid motion is governed by the Navier-Stokes equations

∂v f

∂t
+ ∇ · (v f ⊗ v f ) = ∇ · σ f + g (1a)

∇ · v f = 0 (1b)

where v f is the fluid velocity vector and the fluid stress tensor σ f is given by

σ f = −
p
ρ f

I + ν(∇v f + (∇v f )T) (1c)

where p is the fluid pressure, ρ f the fluid density, ν the fluid kinematic viscosity. Appropriate initial
and boundary conditions are assumed to the fluid Navier-Stokes equations to ensure that the problem
is well posed.

The rigid body motion is governed by the Newton-Euler equations

ms
dvs

dt
= ρ f

∫
∂Ωi

σ f · nds + ms(1 −
ρ f

ρs
)g (2a)

Is
dωs

dt
= ρ f

∫
∂Ωi

r ×
(
σ f · n

)
ds (2b)

where ms, ρs, Is represent the solid mass, the solid density and the moment of inertia respectively. vs,
ωs designate the translational velocity and the angular velocity of the solid. r = xs − xc is the position



vector of the surface point with respect to the solid mass center, where xs is the solid position vector at
the surface and xc is the solid gravity center vector (see Figure 1). n represents the outward-pointing
normal vector to the surface ∂Ωi. The position of the rigid body can be obtained by the integration of
the following kinematic equations

dxc

dt
= vs (3a)

dθc

dt
= ωs (3b)

where θc designates the rotation angle around the solid mass center.

On the fluid-structure interface ∂Ωi the following no-slip boundary condition

v f = vs + ωs × r (4)

needs to be satisfied in order to take the fluid-structure interaction into account.

The immersed boundary method approximates the above fluid-structure interaction problem by re-
placing the solid domain with the surrounding fluid. To account for the presence of the immersed
solid, a boundary force f is introduced and added into the fluid momentum equation. Therefore the
fluid is simply simulated in a fixed domain Ω = Ω f (t) ∪ Ωs(t) irrespective to the movement of the
immersed solid. Following Glowinski et al. [4], we write the entire fluid-structure interaction problem
in the immersed boundary formulation as

∂v f

∂t
+ ∇ · (v f ⊗ v f ) = −

1
ρ f
∇p + ν∇2v f + f in Ω (5a)

∇ · v f = 0 in Ω (5b)

v f = vs + ωs × r on ∂Ωi (5c)

ms
dvs

dt
= −ρ f

∫
Ωs

fdV + ms(1 −
ρ f

ρs
)g (5d)

Is
dωs

dt
= −ρ f

∫
Ωs

r × fdV (5e)

dxc

dt
= vs (5f)

dθc

dt
= ωs (5g)

where the effect of gravity in the fluid momentum equation is from now on incorporated into the
pressure.

Moving immersed boundary method for strongly coupled FSI

We first discretize the governing equations as

v f
n+1 − v f

n

∆t
+

3
2
N(v f

n) −
1
2
N(v f

n−1) = −
1
ρ f
Gpn+1 +

ν

2
L(v f

n+1 + v f
n) + SFn+1 (6a)

Dv f
n+1 = 0 (6b)

T v f
n+1 = vs

n+1 + ωs
n+1 × rn+1 (6c)

ms
vs

n+1 − vs
n

∆t
= −ρ f Fn+1 + ms(1 −

ρ f

ρs
)g (6d)



Is
ωs

n+1 − ωs
n

∆t
= −ρ f r × Fn+1 (6e)

xc
n+1 − xc

n

∆t
= vs

n+1 (6f)

θc
n+1 − θc

n

∆t
= ωs

n+1 (6g)

where L,N ,D, G are the discrete Laplacian, convective, divergence, gradient operators respectively.
Since the fluid mesh in general does not coincident with the solid mesh, T and S are the interpolation
and spreading operators to exchange the flow quantities on both meshes, which can be constructed
from the discrete delta functions as in [8]. F designates the boundary force defined on the solid surface
and thus we have f = SF. n + 1 represents the time level to be solved. Here the convection is treated
explicitly with a second order Adams-Bashforth scheme but the diffusion is handled implicitly with
a second order Crank-Nicolson scheme. Hence the overall scheme is stable under the standard CFL
condition.

To solve above coupled fluid-structure system, we perform the following fractional step scheme:

(1) Prediction step for v̂ f
n+1

v̂ f
n+1 − v f

n

∆t
+

3
2
N(v f

n) −
1
2
N(v f

n−1) = −
1
ρ f
Gpn +

ν

2
L(v̂ f

n+1 + v f
n) (7)

(2) Immersed boundary forcing step for the interface coupling

ṽ f
n+1 − v̂ f

n+1

∆t
= SFn+1 (8a)

T ṽ f
n+1 = vs

n+1 + ωs
n+1 × rn+1 (8b)

Applying (8b) to (8a), we obtain

MFn+1 =
vs

n+1 + ωs
n+1 × rn+1 − T v̂ f

n+1

∆t
(9a)

ṽ f
n+1 = v̂ f

n+1 + ∆tSFn+1 (9b)

whereM is termed as the moving force matrix (M = TS) in [2], which is found to be symmetric and
positive-definite.

For the interface coupling, the solid velocity and position are solved with this moving force equation
through a fixed point iteration, namely iterating (6d)-(6e)-(6f)-(6g)-(9a) until convergence. At each
subiteration, the moving force equation is solved with the conjugate gradient method.

(3) Projection step for obtaining a divergence free velocity v f
n+1

v f
n+1 − ṽ f

n+1

∆t
= −Gφn+1 (10a)

Dv f
n+1 = 0 (10b)

where φ is the pseudo pressure. Applying the divergence operator to (10a) along with the divergence
free condition (10a) gives

Lφn+1 =
1
∆t
Dṽ f

n+1 (11a)



v f
n+1 = ṽ f

n+1 − ∆tGφn+1 (11b)

The final pressure is advanced by

pn+1 = pn + φn+1 −
ν

2
Dv̂ f

n+1 (12)

where the last term is the splitting error resulted from velocity prediction and now is absorbed into
the pressure. This type of projection method yields a consistent pressure boundary condition and thus
free of numerical boundary layer, termed as the rotational incremental pressure correction projection
method in [5].

The novel strongly coupled scheme is computational inexpensive, since the time-consuming pressure
Poisson equation is not evolved in the interface coupling and the moving force equation is very easy
to solve. We will demonstrate the novel scheme in the following numerical examples.

Results

Freely falling and rising cylinder in an infinite quiescent fluid

We first consider a circular cylinder freely falling and rising in an infinite quiescent fluid. This phe-
nomenon happens frequently in nature and a large amount of work can be found in the literature. Here
we compare our numerical results with the data of [6][7]. Namkoong et al. [7] performed the simu-
lation using a body-fitted ALE formulation while Lacis et al. [6] employed the immersed boundary
projection method.

Figure 2: Vorticity fields for a freely falling cylinder in an open domain: (Left) tVt/D = 10 and (right)
tVt/D = 90. The contour level is set from -6 (blue) to 6 (red) with an increment of 0.4.

Two density ratios are considered in this study, i.e. ρs/ρ f = 1.01 for the falling case and ρs/ρ f = 0.99
for the rising simulation. A large computational domain is taken as [−5D, 5D] × [−70D, 70D] with
free-slip boundary conditions applied at all exterior boundaries, where D = 0.5 cm is the cylinder
diameter. A uniform mesh is employed to cover the computational domain, and the mesh resolution
is kept to 0.04D in order to compare with Lacis et al. [6]. Initially the cylinder is located at ±65D,
depending on the situation (65D for the falling case, −65D for the rising case). The Reynolds number



Re = VtD/ν f is 156, where Vt is the terminal velocity. Note that the Reynolds number depends on the
Galileo number G = (|ρs/ρ f − 1|gD3)1/2/ν f (here G = 138) and the density ratio ρs/ρ f .
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Figure 3: Time histories of the vertical and horizontal velocity for the freely rising cylinder ρs/ρ f =

0.99.

Table 1: The drag, lift coefficients and the Strouhal number for the
freely falling and rising circular cylinder in an open domain.

CD max|CL| S t

ρs/ρ f = 1.01 Present 1.35 0.10 0.189
Lacis et al. [6] 1.29 0.14 0.17185
Namkoong et al. [7] 1.23 0.15 0.1684

ρs/ρ f = 0.99 Present 1.35 0.10 0.189
Lacis et al. [6] 1.29 0.14 0.17188
Namkoong et al. [7] - - 0.1687

The vorticity fields are presented in Figure 2 for the falling cylinder case. Initially symmetric vortex
pair forms behind the cylinder in the beginning of falling. After that the numerical error accumulates
and breaks the symmetry. At around tVt/D = 40, the flow becomes unsteady and periodic vortex
shedding occurs. The time histories of the velocity components of the cylinder are plotted in Figure 3.
Table 1 shows the Strouhal number S t = f D/Vt ( f is the shedding frequency) and the coefficients of
drag and lift. Present results are compared to those of [6][7]. Good agreements have been obtained.

Elliptical particle sedimentation in a confined channel

Next we consider the sedimentation of an elliptical particle in a narrow channel, to demonstrate the
ability of current FSI algorithm for handling non-circular object. This example was studied previously
by Xia et al. [10] for the boundary effects on the sedimentation mode. In their work, a multi-block
lattice Boltzmann method is used and compared to the traditional ALE formulation.

To compare with Xia et al. [10], the computational domain is selected to be [0, L] × [0, 7L] with
L = 0.4 cm. The aspect ratio of the ellipse is α = a/b = 2, where a and b are the major and minor



Figure 4: Vorticity fields at different times: (from left to right) t = 0.1 s, 0.3 s, 0.5 s, 1.0 s, 1.5 s, 2.0 s.
The contour levels are set from -15 (blue) to 15 (red).

axes respectively. The blockage ratio is defined as β = L/a = 4. The density ratio is ρs/ρ f = 1.1.
The kinematic viscosity of fluid is set to ν = 0.01 cm2/s. The particle starts falling in a quiescent fluid
from the centroid at (0.5L, 6L) with an initial angle of π/4 to break the symmetry.
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Figure 5: Particle trajectory and orientation of the elliptical particle. ”—”, present results; ”◦”, results
of [10].



No-slip boundary conditions are applied at four boundaries. A uniform mesh is employed with a gird
resolution of 0.0027 cm. The time step is chosen such that the CFL condition is satisfied. Figure 4
shows the vorticity fields at different times at t = 0.1 s, 0.3 s, 0.5 s, 1.0 s, 1.5 s, 2.0 s. The trajectory and
orientations are compared to the results of [10] in Figure 5. Good agreements have been obtained.

Conclusions

In this work an efficient strongly coupled fluid-structure interaction scheme was proposed in the con-
text of the moving immersed boundary method. To accurately impose the no-slip boundary condition
at the immersed interface, a moving force equation was derived and solved with the conjugate gra-
dient method. The global scheme follows a fractional step manner while the interface coupling was
accomplished between the solid motion equations with the moving force equation in the immersed
boundary forcing step. Stable results were obtained even when the solid density is smaller than the
fluid density. Numerical results have demonstrated the accuracy of the proposed method.
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