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ABSTRACT

A compressible and multiphase flows solver has been developed for the study of one-dimensional shock and expansion
tube problems. This solver has a structure similar to those of the one-fluid Euler solvers, differing from them by the
presence of a void ratio transport-equation. The model and the system of equations to be simulated are presented. Results
are displayed for shock and expansion tube problems. Close agreement with reference solutions, obtained from explicit
finite volume approaches, is demonstrated for all of the examples. Different numerical methods are additionally displayed
to provide comparable and improved computational efficiency to the model and the system of equations. The overall
procedure is therefore very well suited for use in general two-phase fluid flow simulations.
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Introduction

Theoretical and numerical modeling of two-phase fluid flow problems is of practical importance in many areas of industry
such as thermal power generation plants and other interesting phenomena occurring in environmental applications. Despite
their relevance in industrial and environmental applications, compressible two-phase flow investigations have remained
complex and challenging areas of applied mathematics and computational methods. The most widely used modeling
approach is based on averaged two-phase fluid flow model such as the one-fluid formulation. Within such averaged
model, there are different approaches according to the physical assumptions of interest made on the local mechanical and
thermodynamical equilibrium and to the slip condition between phases. This has resulted in the development of diverse
models and system of equations ranging from seven to three equations only. There also have been a number of significant
contributions in different areas and applications relevant to two-phase flows. These are very well acknowledged in the
scientific literature for which we refer the reader to [2, 5, 9, 19] for further details.
A critical aspect for two-phase simulations concerns the numerical methods of interest and their accuracy problems.
The hyperbolic nature of such flows and their characteristicanalysis makes the simulation very stiff and challenging. In
addition to that, the volume fraction variation across acoustic waves causes difficulties for the Riemann problem resolution
particularly in the derivation of approximate Riemann solvers. This is due to the occurrence of the large discontinuities
of thermodynamic variables and equations of state involvedat material interfaces. As a result, numerical instabilities
and spurious oscillations appear through the complete wavestructure [1]. The reason for such unusual behavior lies in
the numerical dissipation of the methods which reproduce a thermodynamic path that is not correct. This also implies
computational failure for Godunov methods which is due to the large decrease of the pressure up to vacuum ghost.
In the present paper, modeling and computer simulations areperformed on the basis of Navier-Stokes applications. A
four-equation model of the two-fluid model type is considered for the current purpose. The set of equations includes
three conservation laws for mixture quantities along with avoid ratio transport-equation [6, 7]. This set of equations
is solved by means of explicit finite volume techniques basedon Jameson, Rusanov, AUSM-type, VF Roe and HLLC
Riemann solvers methods. This is followed by computationalsimulations on one-dimensional inviscid problems to study
the behavior of the performed numerical methods. Computational results are then displayed for shock tube and rarefaction
problems, including problems of large depression. These test cases establish the ability, accuracy and efficiency of our
computational treatment.



Models and Methods

The homogeneous mixture approach is used to model two-phaseflows. In addition, the phases are assumed to be in thermal
and mechanical equilibrium, that is, both phases share the same temperatureT and the same pressureP. The evolution of
the two-phase flow can be described by the conservation laws that employ the representative flow properties as unknowns
just as in a single-phase problem.

A four-equation model

We consider a reduction form of the five-equation Kapila model [9] under thermal equilibrium between phases. We also
assume that the liquid phase is in a saturation state. The model consists of three conservation laws for mixture quantities
and an additional equation for the void ratio. The governingequations under consideration are then governed by the
following set of partial differential equations:
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The individual variables areρ mixture density,u velocity, P pressure,α void fraction, E and H are total energy and
enthalpy of the two-phase flow. The source termK involves the speed of sound,ck, and densities,ρk, of pure phases,
k = l, v. The subscriptsv and l indicate the vapor and the liquid phase, respectively. The four equations model form a
system of conservation laws having a hyperbolic nature. Theeigenvalues of the system are found to be:

λ1 = u− cwallis, λ2 = u = λ3, λ4 = u+ cwallis (5)

wherecwallis is the the propagation of acoustic waves without mass and heat transfer [17]. This speed of sound is expressed
as a weighted harmonic mean of speeds of sound of each phase:
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Equation of state

To close the system, an equation of state (EOS) is necessary to link the pressure and the temperature to the internal energy
and density. For the pure phases, we have employed the convexstiffened gas EOS. An expression for the pressure and the
temperature can be deduced from the thermal and mechanical equilibrium assumption (see [13], and references therein,
for details).

Numerical methods

In this short paper, the finite volume techniques are performed on the basis of the Riemann problem. In one-dimensional
space, the conservative part of the four-equation model canbe represented in a matrix form as:
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HereW is the vector of conserved variables,F andS are the convective flux and the source term that includes the void
ratio equation given in (4). These vectors are defined by
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Based on finite volume techniques, the computational cells involve the discretization of the spatial domainx into regular
meshes of length∆x and the temporal domaint into intervals of duration∆t. A discrete form of equations (7) and (8) can
be written as:

∆x
Wn+1

i −Wn
i

∆t
+ Fn

i+1/2 − Fn
i−1/2 = Sn

i ∆x (9)

where the time step should fulfill the CFL condition in order to guarantee stability requirement andFn
i+1/2 is the numerical

flux through the cell interface. This numerical flux can be computed using the solution of the Riemann problem or any
other numerical method of interest where the resolution of the Riemann problem is fully numerical.
Various formulations of numerical flux have been proposed tosolve multiphase compressible flows. See for instance [18]
or [14], and references therein, for such formulations and extensions. In the present study, we have tested and compared
five documented formulations, namely, the Jameson-Schmidt-Turkel scheme [8], an AUSM-type scheme [4], the Rusanov
scheme [12], the HLLC scheme [16] and a VF Roe non-conservative scheme [3].

Computational Results on One-Dimensional Two-Phase Flow Problems

In this section we exhibit the ability of the current four-equation model, convergence and computational performance of
the proposed numerical methods on two groups of two-phase flow problems. In the first group, we considered two shock
tube problems to validate the current numerical tool. A comparison with solutions provided with a seven-equation model
using the Discrete Equations Method (DEM) is proposed [15].In DEM approach, the pure fluids are first integrated at
the microscopic level and then the discrete formulae are averaged. The obtained continuous model of multiphase flow is
equivalent to the Baer-Nunziato model. The infinite rate relaxation procedures are used to correctly treat the full system.
The second group tests the expansion tube, double rarefaction, problems which are very stiff cases for numerical methods.
Results of the expansion tube problems are validated with other models as we shall see later.

Water-gas mixture shock tube

This test case is proposed in [10], computed with five- and seven-equation models. A one meter shock tube involves a
discontinuity of the volume fraction. Forx < 0.7 the gas volume fraction is 0.2, while it is 0.8 otherwise. The fluids are
governed by the stiffened gas EOS and are initially at rest. The left chamber contains high pressure fluids (109 Pa) while
the right one contains low pressure fluids (105 Pa). The parameters of EOS are:
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Computations have been performed with a mesh of 1000 cells and with a time step of 10−7 s. Results are shown at time
0.2µs in Fig. 1 for all numerical methods. Profiles of void ratio andpressure. Near discontinuities, the Jameson scheme
produced small oscillations of the solution. For the void ratio profile, we observe a small discrepancy in the post-shock
area aroundx = 0.85 m. The solution obtained with the Rusanov and AUSM methodspresent a small variation, not
captured by other methods.

In comparison with the seven-equation model, the pressure curve is quite similar. Yet, we notice some differences between
the solutions in the volume fraction profile. In particular,the post-shock values of the void ratio are not the same and
the seven-equation model shows an oscillation near the contact discontinuity zone. This behaviour was also noted in
simulations presented in [10].

Epoxy-spinel mixture shock tube

In [11] a one meter tube contains two chambers separated atx = 0.6 m. A mixture of epoxy and spinel fills both chambers.
The initial volume fraction of epoxy is 0.5954 everywhere. The left chamber pressure is 2 1011 Pa, while the right chamber
is at atmospheric pressure. The fluids are initially at rest.The parameters of EOS are:
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Figure 1. Water-gas shock tube problem. Comparison of different numerical methods compar-
ison on a mesh of 1000 cells at a time oft = 0.2 ms. Void ratio and pressure profiles.
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Computations have been performed with a mesh of 1000 cells and with a time step of 10−7 s. Numerical solutions com-
puted with the 4-equation model at timet = 29µsare shown in Figure 2. The analytical solution of the equilibrium model
proposed in [11] is incorporated for the sake of comparison and validation. Differences between solutions are weak. For
the void ratio profiles, the plateau after the shock is less intense with the Rusanov scheme. As previously indicated, the
solution computed with the Jameson scheme presents small oscillations near discontinuities. For all methods, the pressure
profiles are in close agreement with the analytical solution. Discrepancies appear on the void ratio jump at shock front,
which is underestimated by all models, especially the seven-equation model.
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Figure 2. Epoxy-spinel shock tube problem. Different numerical methods comparison on a mesh
1000 cells at timet = 0.29µs. Void ratio and pressure profiles.

Water-gas mixture expansion tube,| u |= 2 m/s

An expansion tube problem is considered with an initial velocity discontinuity located at the middle of the tube. This test
consists in a one meter long tube filled with liquid water at atmospheric pressure and with densityρl =1150 kg/m3. A weak
volume fraction of vaporα =0.01 is initially added to the liquid. The initial discontinuity is set at 0.5 m, the left velocity
is -2 m/s and the right velocity is 2 m/s. The solution involves two expansion waves. As gas is present, the pressure cannot
become negative. To maintain positive pressure, the gas volume fraction increases due to the gas mechanical expansion
and creates a pocket [13].
In Figure 3, the solution obtained is presented at timet = 3.2 ms. The mesh contains 1000 cells. The time step is set
to 10−7 s. The pressure evolution marks large discrepancies. Solutions provided by the Jameson, Rusanov and AUSM
methods are in close agreement with the two-fluid solution computed in [20]. With the approximate Riemann solvers, the
rarefaction waves are badly predicted. A CPU time of 14h was necessary for the two-fluid simulation. With our 4-equation
model, using the Rusanov or Jameson scheme, the CPU time is less than five minutes.
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Figure 3. Water-gas expansion tube|u| = 2 m/s. Different numerical methods comparison on a
mesh of 1000 cells at timet = 3.2 µs. Void ratio and pressure profiles.

Water-gas mixture expansion tube,| u |= 100m/s

In [13], an expansion tube, double rarefaction, test is considered. A one meter tube filled with pure water is at atmospheric
pressure. The density for water is 1000 kg/m3. An initial velocity discontinuity is located atx= 0.5 m. The velocity of the
right part is set as 100 m/s, and the left part as -100 m/s. The EOS parameters are similar to those used for the previous
test case. A small volume fraction of gas (1 kg/m3) is initially present in the water. This case is stiffer than the previous
one because of the high value of the initial velocity. Computations are performed on a 1000-cell mesh with a time step set
to 10−7 s. The approximate Riemann solvers (HLLC and VF Roe) were notable to provide a solution. An anti-diffusive
term can be added to the HLLC dissipation to improve the scheme. It has been not tested in the present study.
Figure 4 presents results obtained with the 4-equation model at time t = 1.85 ms. The pressure evolution given by the
AUSM scheme is not correct. With a grid refinement, the solverleads to divergence. We observe also oscillations on the
velocity profiles near the initial discontinuity position.On the contrary, the solutions provided by both the Jameson and
Rusanov scheme are in very good agreement with solutions presented in [13].
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Figure 4. Water-gas expansion tube|u| = 100m/s, numerical methods comparison, mesh 1000
cells,t = 1.85µs. Void ratio and pressure profiles.

Concluding Remarks

This paper provides a comparison of various numerical methods for compressible two-phase flow four-equation model.
In its present form, these methods include the AUSM-family,approximate Riemann solvers (VF Roe, HLLC), a simple
Godunov approach (Rusanov) and a space-centered scheme with artificial dissipation (Jameson). We then extensively
investigated the proposed methods in the existing system ofequations on the basis of shock and expansion tube problems.
The simulation results suggest the rarefaction waves near the vacuum apparition is more than hard situation for both the
approximate Riemann solvers and the AUSM scheme. More specifically, it is not possible to obtain a resolution using
these methods. Only the Jameson and Rusanov methods facilitated the simulation of large rarefaction cases.
The presented computational results give considerable confidence in our four-equation model and methods for use as
a robust and reliable approach in shock and expansion tube problems of two-phase flows. Room is still available for
further work on such problems. For instance, investigationof anti-diffusive terms in needed towards homogeneous and



non-equilibrium two-phase flows.
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