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ABSTRACT

A compressible and multiphase flows solver has been deweligpehe study of one-dimensional shock and expansion
tube problems. This solver has a structure similar to thdsbe one-fluid Euler solvers, filering from them by the
presence of a void ratio transport-equation. The modellaadystem of equations to be simulated are presented. Result
are displayed for shock and expansion tube problems. Clgreement with reference solutions, obtained from explicit
finite volume approaches, is demonstrated for all of the gtesn Diferent numerical methods are additionally displayed
to provide comparable and improved computatiorfitiency to the model and the system of equations. The overall
procedure is therefore very well suited for use in generatpivase fluid flow simulations.
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Introduction

Theoretical and numerical modeling of two-phase fluid floatpems is of practical importance in many areas of industry
such as thermal power generation plants and other integgstienomena occurring in environmental applicationspies
their relevance in industrial and environmental applmadi compressible two-phase flow investigations have reedai
complex and challenging areas of applied mathematics anmgputational methods. The most widely used modeling
approach is based on averaged two-phase fluid flow model sutheaone-fluid formulation. Within such averaged
model, there are ffierent approaches according to the physical assumptionsesést made on the local mechanical and
thermodynamical equilibrium and to the slip condition beén phases. This has resulted in the development of diverse
models and system of equations ranging from seven to thrgatiegs only. There also have been a number of significant
contributions in diferent areas and applications relevant to two-phase flowsselare very well acknowledged in the
scientific literature for which we refer the reader to [2, 519] for further details.

A critical aspect for two-phase simulations concerns thmemical methods of interest and their accuracy problems.
The hyperbolic nature of such flows and their characterastalysis makes the simulation veryfsind challenging. In
addition to that, the volume fraction variation across aticwaves causesfticulties for the Riemann problem resolution
particularly in the derivation of approximate Riemann gob/ This is due to the occurrence of the large discontemuiti
of thermodynamic variables and equations of state invobtedhaterial interfaces. As a result, numerical instabtiti
and spurious oscillations appear through the complete waueture [1]. The reason for such unusual behavior lies in
the numerical dissipation of the methods which reprodudeeanodynamic path that is not correct. This also implies
computational failure for Godunov methods which is due ®l#rge decrease of the pressure up to vacuum ghost.

In the present paper, modeling and computer simulationpar®rmed on the basis of Navier-Stokes applications. A
four-equation model of the two-fluid model type is considefer the current purpose. The set of equations includes
three conservation laws for mixture quantities along withoa ratio transport-equation [6, 7]. This set of equations
is solved by means of explicit finite volume techniques basedameson, Rusanov, AUSM-type, VF Roe and HLLC
Riemann solvers methods. This is followed by computatisimallations on one-dimensional inviscid problems to study
the behavior of the performed numerical methods. Compmutatiresults are then displayed for shock tube and rarefacti
problems, including problems of large depression. Thestecteses establish the ability, accuracy afitiency of our
computational treatment.



Models and Methods

The homogeneous mixture approach is used to model two-flbase In addition, the phases are assumed to be in thermal
and mechanical equilibrium, that is, both phases sharestine semperatur€ and the same pressupPe The evolution of

the two-phase flow can be described by the conservation lvemploy the representative flow properties as unknowns
just as in a single-phase problem.

A four-equation model

We consider a reduction form of the five-equation Kapila md@leunder thermal equilibrium between phases. We also
assume that the liquid phase is in a saturation state. Theloodsists of three conservation laws for mixture quagttiti
and an additional equation for the void ratio. The goverréggations under consideration are then governed by the
following set of partial diterential equations:
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The individual variables argp mixture densityu velocity, P pressureq void fraction, E andH are total energy and
enthalpy of the two-phase flow. The source tefninvolves the speed of sound, and densitiesyy, of pure phases,
k = I,v. The subscripty andl indicate the vapor and the liquid phase, respectively. Doe équations model form a
system of conservation laws having a hyperbolic nature.€igenvalues of the system are found to be:

A1 =U—Cpalis, A2 =U=A3, Aa=UH+ Cyaliis (5)

wherecyaiis IS the the propagation of acoustic waves without mass anddaeafer [17]. This speed of sound is expressed
as a weighted harmonic mean of speeds of sound of each phase:
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Equation of state

To close the system, an equation of state (EOS) is necesslamy( the pressure and the temperature to the internal gnerg
and density. For the pure phases, we have employed the cstiffered gas EOS. An expression for the pressure and the
temperature can be deduced from the thermal and mechangigiéibéum assumption (see [13], and references therein,
for details).

Numerical methods

In this short paper, the finite volume techniques are peroron the basis of the Riemann problem. In one-dimensional
space, the conservative part of the four-equation modebearpresented in a matrix form as:
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HereW is the vector of conserved variabldsandS are the convective flux and the source term that includesdite v
ratio equation given in (4). These vectors are defined by
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Based on finite volume techniques, the computational aalisive the discretization of the spatial domaimto regular
meshes of lengthx and the temporal domatrinto intervals of duratiomt. A discrete form of equations (7) and (8) can
be written as:
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where the time step should fulfill the CFL condition in ordegtiarantee stability requirement a‘ﬁﬂllz is the numerical
flux through the cell interface. This numerical flux can be pated using the solution of the Riemann problem or any
other numerical method of interest where the resolutiomeRiemann problem is fully numerical.
Various formulations of numerical flux have been proposezbtee multiphase compressible flows. See for instance [18]
or [14], and references therein, for such formulations attdresions. In the present study, we have tested and compared
five documented formulations, namely, the Jameson-Schkfuidiel scheme [8], an AUSM-type scheme [4], the Rusanov
scheme [12], the HLLC scheme [16] and a VF Roe non-consegevatheme [3].

AX

Computational Results on One-Dimensional Two-Phase FlowrBblems

In this section we exhibit the ability of the current fourtedjon model, convergence and computational performahce o
the proposed numerical methods on two groups of two-phasepiioblems. In the first group, we considered two shock
tube problems to validate the current numerical tool. A carigon with solutions provided with a seven-equation model
using the Discrete Equations Method (DEM) is proposed [IlBDEM approach, the pure fluids are first integrated at
the microscopic level and then the discrete formulae areageel. The obtained continuous model of multiphase flow is
equivalent to the Baer-Nunziato model. The infinite ratexation procedures are used to correctly treat the fullesyst
The second group tests the expansion tube, double ramfaptioblems which are very fitcases for numerical methods.
Results of the expansion tube problems are validated wihtbraghodels as we shall see later.

Water-gas mixture shock tube

This test case is proposed in [10], computed with five- anérs@guation models. A one meter shock tube involves a
discontinuity of the volume fraction. For < 0.7 the gas volume fraction is 0.2, while it is 0.8 otherwisee Tluids are
governed by the sfiened gas EOS and are initially at rest. The left chamber owntagh pressure fluids (20Pa) while

the right one contains low pressure fluids{B®&). The parameters of EOS are:
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Computations have been performed with a mesh of 1000 cedisvith a time step of 10 s. Results are shown at time
0.2usin Fig. 1 for all numerical methods. Profiles of void ratio egréssure. Near discontinuities, the Jameson scheme
produced small oscillations of the solution. For the voitiorgrofile, we observe a small discrepancy in the post-shock
area arounk = 0.85 m. The solution obtained with the Rusanov and AUSM methmdsent a small variation, not
captured by other methods.

In comparison with the seven-equation model, the pressue és quite similar. Yet, we notice someférences between
the solutions in the volume fraction profile. In particultre post-shock values of the void ratio are not the same and
the seven-equation model shows an oscillation near theacbdtscontinuity zone. This behaviour was also noted in
simulations presented in [10].

Epoxy-spinel mixture shock tube

In [11] a one meter tube contains two chambers separated &6 m. A mixture of epoxy and spinel fills both chambers.
The initial volume fraction of epoxy is 0.5954 everywherbeTeft chamber pressure is 213 ®a, while the right chamber
is at atmospheric pressure. The fluids are initially at fEs& parameters of EOS are:
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Figure 1. Water-gas shock tube problem. Comparison of dferent numerical methods compar-
ison on a mesh of 1000 cells at a time a@f= 0.2 ms. Void ratio and pressure profiles.
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Computations have been performed with a mesh of 1000 cedisvith a time step of 10’ s. Numerical solutions com-
puted with the 4-equation model at tirhe 29 usare shown in Figure 2. The analytical solution of the eqiiliilmn model
proposed in [11] is incorporated for the sake of comparisuh\alidation. Diferences between solutions are weak. For
the void ratio profiles, the plateau after the shock is lesmige with the Rusanov scheme. As previously indicated, the
solution computed with the Jameson scheme presents sroéhtiens near discontinuities. For all methods, the pues
profiles are in close agreement with the analytical solutidiscrepancies appear on the void ratio jump at shock front,
which is underestimated by all models, especially the seepration model.
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Figure 2. Epoxy-spinel shock tube problem. Offerent numerical methods comparison on a mesh
1000 cells at timet = 0.29 us. Void ratio and pressure profiles.

Water-gas mixture expansion tubye, |= 2 nmys

An expansion tube problem is considered with an initial g#jodiscontinuity located at the middle of the tube. Thistte
consists in a one meter long tube filled with liquid water at@épheric pressure and with dengity=1150 kgm®. A weak
volume fraction of vapor =0.01 is initially added to the liquid. The initial discontiity is set at 0.5 m, the left velocity

is -2 nys and the right velocity is 2 fa. The solution involves two expansion waves. As gas is ptede pressure cannot
become negative. To maintain positive pressure, the gasnefraction increases due to the gas mechanical expansion
and creates a pocket [13].

In Figure 3, the solution obtained is presented at time 3.2 ms The mesh contains 1000 cells. The time step is set
to 107 s. The pressure evolution marks large discrepancies. iSatuprovided by the Jameson, Rusanov and AUSM
methods are in close agreement with the two-fluid solutionmated in [20]. With the approximate Riemann solvers, the
rarefaction waves are badly predicted. A CPU time of 14h ve&essary for the two-fluid simulation. With our 4-equation
model, using the Rusanov or Jameson scheme, the CPU tinss ighkmn five minutes.
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Figure 3. Water-gas expansion tubgu| = 2 m/s. Different numerical methods comparison on a
mesh of 1000 cells at timé = 3.2 us. Void ratio and pressure profiles.

Water-gas mixture expansion tulye, |= 100 mys

In [13], an expansion tube, double rarefaction, test is iciemed. A one meter tube filled with pure water is at atmospher
pressure. The density for water is 1000rké. An initial velocity discontinuity is located at= 0.5 m. The velocity of the
right part is set as 100 s, and the left part as -100/s1 The EOS parameters are similar to those used for the pieevio
test case. A small volume fraction of gas (k) is initially present in the water. This case isfi&i than the previous
one because of the high value of the initial velocity. Comafions are performed on a 1000-cell mesh with a time step set
to 107 s. The approximate Riemann solvers (HLLC and VF Roe) werahlat to provide a solution. An antif@lisive
term can be added to the HLLC dissipation to improve the sehémhas been not tested in the present study.

Figure 4 presents results obtained with the 4-equation hraidémet = 1.85 ms. The pressure evolution given by the
AUSM scheme is not correct. With a grid refinement, the sdlads to divergence. We observe also oscillations on the
velocity profiles near the initial discontinuity positioBn the contrary, the solutions provided by both the Jamendn a
Rusanov scheme are in very good agreement with solutiossipted in [13].
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Figure 4. Water-gas expansion tubéu| = 100 m/s, numerical methods comparison, mesh 1000
cells,t = 1.85us. Void ratio and pressure profiles.

Concluding Remarks

This paper provides a comparison of various numerical nustior compressible two-phase flow four-equation model.
In its present form, these methods include the AUSM-fanaipproximate Riemann solvers (VF Roe, HLLC), a simple
Godunov approach (Rusanov) and a space-centered schemartifitial dissipation (Jameson). We then extensively
investigated the proposed methods in the existing systerqutions on the basis of shock and expansion tube problems.
The simulation results suggest the rarefaction waves heargcuum apparition is more than hard situation for both the
approximate Riemann solvers and the AUSM scheme. More figalyi, it is not possible to obtain a resolution using
these methods. Only the Jameson and Rusanov methodsatadilihe simulation of large rarefaction cases.

The presented computational results give considerablédemte in our four-equation model and methods for use as
a robust and reliable approach in shock and expansion tulddeons of two-phase flows. Room is still available for
further work on such problems. For instance, investigatibanti-difusive terms in needed towards homogeneous and



non-equilibrium two-phase flows.
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