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Abstract 
Fibre-reinforced elastomeric isolator (FREI) in an un-bonded application is an improved 
device for seismic mitigation of low-rise buildings. It is expected to reduce the cost, weight 
and provide easier installation in comparison to the conventional elastomeric isolator, which 
consists of elastomeric layers interleaved with steel plate as reinforcement. The horizontal 
response of un-bonded isolator is nonlinear due to rollover deformation and the horizontal 
stiffness is a function of both vertical load and horizontal displacement. Most previous studies 
have been focused to develop the model for predicting stability of the bonded conventional 
elastomeric isolators with low shape factors. In the present study, predicting stability of a 
prototype un-bonded FREI is presented based on the dynamic response utilizing finite 
element (FE) analysis. A prototype isolator is investigated under the variation of vertical loads 
and cyclic horizontal displacement to evaluate the performance and the effect of the vertical 
load on the behaviour of the isolator. FE analysis result shows that the critical load capacity of 
the isolator is significantly higher than the design vertical load, and the effective horizontal 
stiffness decreases with the increase in the vertical loads. Furthermore, the horizontal 
response of the isolator is also conducted under the design vertical load and increasing 
horizontal displacement up to 2.00tr to observe the rollout instability. 
Keywords: Fibre reinforced elastomeric isolator, un-bonded isolator, rollout instability, 
dynamic stability, buckling, critical load, analytical model. 

Introduction 
Seismic isolation is a well-known earthquake mitigation technique, where a layer of low 
horizontal stiffness is introduced between the foundation and superstructure. As a result, the 
natural period of vibration of the structure changes beyond the high-energy period range of 
earthquakes, and hence the seismic energy transferred to the structure is significantly reduced. 
Conventional steel reinforced elastomeric isolators (SREIs) have become a widely accepted 
technique in the structure over the past four decades for protecting the buildings from strong 
ground motion. They consist of alternating layers of rubber bonded to intermediate steel 
shims with two steel end plates at top and bottom. In general, SREIs are often applied for 
large, important buildings like hospitals and emergency centres, in countries such as Japan, 
New Zealand, United States, Mexico, Italy, etc. This limited use is largely due to the high 
material, manufacturing and installation costs. It is expected that the use of seismic isolators 
can be extended to ordinary low-rise housing if the weight and cost of the isolators are 
reduced. In view of this, fibre reinforced elastomeric isolators (FREIs) are proposed by 
replacing steel shims in conventional isolators by multi-layer of fibre fabric as reinforcement 
sheets to reduce their weight and cost. An un-bonded fibre reinforced elastomeric isolator (U-
FREI) is a significant effort to improve FREI by removing two steel end plates and installing 
directly between the foundation and superstructure without any connection to these 
boundaries. Using U-FREI would reduce the weight and cost, easier installation, and can be 
made as a long strip and then easily cut to the required size. It means that the U-FREIs can be 
used for low-rise buildings subjected to earthquake loading in the developing countries. 
 
The stability of elastomeric isolators is an important parameter for the design of seismic 
isolation systems. Elastomeric isolators are used in the structure to resist strong ground 
motion of earthquake with large displacement. Study on stability of elastomeric isolators 
refers to the determination of critical load carrying capacity while undergoing large horizontal 



 

displacement. Generally, the critical load carrying capacity of isolator reduces with increasing 
horizontal displacement due to the reduction of the effective horizontal stiffness. The critical 
load in an elastomeric isolator is defined as the vertical load for which the horizontal stiffness 
is reduced to zero. 
 
Procedures to evaluate critical loads of elastomeric isolators are based on an extension of 
Euler buckling load theory by Southwell [1932] to experimentally determine the buckling 
load in the flexible columns and a theoretical approach by Haringx [1948, 1949(a,b)] to 
predict the stability of rubber rods. Later, Buckle and Kelly [1986] carried out experimental 
studies to evaluate stability of SREIs under quasi-static loading using Southwell’s procedure 
and under dynamic loading on a scaled model of bridge deck using shaking table test. Stable 
rollover of isolators could be observed in this study. These studies were however conducted 
with linear model and under small imposed displacement. In general, the behaviour of 
elastomeric isolators is nonlinear when subjected to large horizontal displacement under 
strong ground motion.  
 
Some extensive analytical and numerical studies were performed to analyze the stability limit 
in elastomeric isolators and model their behaviour. Koh and Kelly [1989] proposed a two-
spring mechanical model and visco-elastic stability model based on extension of Haringx’s 
theory. The influence of vertical load on the horizontal stiffness of SREIs was evaluated. 
Stanton, et al. [1990] studied the stability of steel laminated elastomeric bearings using a 
modified linear model from Haringx’s theory with configuration accounting for nonlinearity. 
When an elastomeric bearing was simultaneously subjected to vertical load and increasing 
lateral displacement, the shear force on bearing was observed to have passed through a 
maximum value. This point is the location of zero tangential stiffness, which is considered as 
the stability limit. Buckle and Liu [1993, 1994] experimentally determined the critical 
buckling behaviour of SREIs at high shear strains and proposed a simple reduced-area 
formula to estimate the critical load in bearings by overlapping area method. However, this 
method predicted a simple linear (for rectangular bearings) or nearly linear (for circular 
bearings) reduction in critical load with lateral displacement independent of material or 
geometric parameters of bearings. Actually, this reduction is not linear as observed in 
experimental tests. A nonlinear analytical model consisting of two-spring systems was 
proposed by Nagarajaiah and Ferrell [1999] in an effort to more accurately predict the critical 
load capacity of SREIs of different sizes and shape factors at a certain lateral displacement. 
The model was developed from two-spring model by Koh and Kelly with large displacement, 
large rotations and nonlinearities in shear and rotational stiffness of the bearing. The model 
was shown to predict a reduction in the critical load capacity with increasing lateral 
displacement, and the critical load capacity was not equal to zero at a lateral displacement 
equal to width of bearing. Buckle, et al. [2002] validated the nonlinear analytical solutions 
proposed by Nagarajaiah and Ferrell [1999] and determined the effect of lateral displacement 
on critical load by experimental tests with a series of low-shape-factor elastomeric bearings. 
Iizuka [2000] proposed a macroscopic model based on the two-spring model by Koh and 
Kelly, where the linear springs were replaced by nonlinear springs for predicting the stability 
of laminated rubber bearings at large deformations and under different vertical loads. The 
nonlinear parameters of the shear and rotational springs were determined from basic load test. 
Detailed nonlinear finite element analysis and an improved analytical formulation for 
predicting the reduced load-carrying capacity of bearings based on overlapping area method 
were also presented by Weisman and Warn [2012]. A recent study by Sanchez, et al. [2013] 
focused on experimental tests to examine the behaviour of steel reinforced elastomeric 
bearings at and beyond their stability limits. Three methods (two quasi-static tests and one 
dynamic loading test) were conducted to predict the stability limits of bearings and compared 
with the reduced-area formulation. Han, et al. [2013] proposed a modified analytical model 
based on the sensitivity analysis using Iizuka’s model for the prediction of critical load 
capacity of bearings. Vemuru, et al. [2014] presented an enhanced analytical model based on 
a nonlinear analytical model by Nagarajaiah and Ferrell for application beyond stability limit. 
Thus, most previous studies were focused to improve the analytical model for predicting 
stability of elastomeric isolators and these models were developed for bonded conventional 
elastomeric isolators. Therefore, it is necessary to study on the stability of FREIs in un-
bonded application. 
 



 

As a result of un-bonded application, isolators undergo large deformation due to stable 
rollover under large horizontal displacements. Some regions of the top and bottom surfaces of 
isolator lose contact with the superstructure and substructure when the isolator is displaced 
horizontally. The reduction of the effective horizontal stiffness due to rollover deformation 
increases the seismic mitigation efficiency of isolator; but stability of isolator must be 
maintained. If an un-bonded FREI with a certain shape factor, S (defined as the ratio of the 
loaded area to load free area of a rubber layer) and aspect ratio, R (as the ratio of width to total 
height of the isolator) is able to achieve positive incremental load-resisting capacity during the 
course of cyclic loading, the isolator is assumed to be stable. On the other hand, the effective 
stiffness of an un-bonded isolator may also increase due to the initiation of contact between 
the vertical faces of the elastomer layers with the support surfaces, when they undergo very 
large displacement. Thus, a transition region between the decrease and increase in the 
effective stiffness is observed, and at certain value of displacement within this region, the 
increase in the effective stiffness of isolator due to contact exceeds the decrease in the 
stiffness due to rollover, and a hardening behaviour is occurred. This hardening behaviour 
observed in an un-bonded FREI is considered to be an advantageous characteristic since it can 
limit the maximum horizontal displacement of the isolation system in situations beyond the 
design basis seismic events. Studies related to the prediction of stability of un-bonded FREIs 
under cyclic loading were carried out experimentally by Raaf, et al. [2011]. In this study, 
authors proposed a method of fitting a polynomial to experimental force-displacement 
hysteresis data to predict the critical load capacity of isolator. This method was used to 
determine the fitted backbone curve and horizontal tangential stiffness. Additional studies for 
the buckling behaviour of un-bonded isolators were conducted using theoretical analysis by 
Kelly, et al. [2011, 2012]. 
 
From the above-mentioned literature review, it is observed that most of the models for 
predicting stability of elastomeric isolators are developed for conventional isolators in bonded 
application. There are very few studies for ascertaining the stability of FREIs in an un-bonded 
application. In addition, scaled sizes of elastomeric isolators were considered in these studies 
with low shape factors and aspect ratio, e.g. Nagarajaiah and Ferrell [1999], Buckle, et al. 
[2002] considered isolators with S = 1.67 to 10; Sanchez, et al. [2013] with S = 5.51 to 10.16; 
Han, et al. [2013] with S = 5 to 10.2; Vemuru, et al. [2014] with S = 10.64. Experimental 
studies were conducted for isolators with larger shape factors such as Raaf, et al. [2011] with 
S = 11 but for a scaled size of 70x70x24 mm; Weisman and Warn [2012] with S = 10 to 12. 
Therefore, it is necessary to carry out the studies for predicting the stability of a prototype U-
FREI with high shape factor. 
 
This paper presents studies related to predicting stability of prototype un-bonded FREI by FE 
analysis. Determination of the stability limit of an prototype isolator by experimental tests is 
relatively accurate, but it is difficult to investigate in laboratory due to constraints of 
experimental facility. In this study, predicting stability of a prototype un-bonded isolator is 
investigated by FE analysis and the accuracy of the response of the isolator under design 
vertical load and increasing horizontal displacement up to 0.89tr (80 mm) is validated by 
comparing with the experimental results. A prototype FREI with size of 250x250x100 mm, 
shape factor of 12.5 and aspect ratio of 2.50 is investigated under the variation of vertical load 
and cyclic horizontal displacement to determine the critical load capacity and the effect of the 
vertical load on the behaviour of this isolator. Further, the horizontal response of the un-
bonded isolator is also evaluated under the design vertical load and increasing horizontal 
displacement up to 2.00tr (180 mm) to observe the rollout instability of the isolator. 

Procedure for determination the critical load capacity of un-bonded FREI 

As observed from literature survey, stability of an elastomeric isolator is evaluated based on 
the relation of shear force with horizontal displacement. The critical load capacity of the 
elastomeric isolator is defined as the vertical load for which the horizontal stiffness is reduced 
to zero (or zero tangential stiffness). When the elastomeric isolator is subjected to 
simultaneously the vertical load, P, and increasing horizontal displacement, u, shear force 
may pass through a maximum value, as illustrated in Fig. 1. The point of maximum shear 
force is considered the stability limit defined by the critical horizontal displacement, ucr, and 
corresponding vertical load referred to herein as the critical load, Pcr.  
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Fig. 1. Shear force versus horizontal displacement 

 
From theoretical analysis, the critical load is defined as the point, where the shear force 
reaches a maximum value: 
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where F, u, P are shear force, horizontal displacement and vertical load, respectively. 
There is no requirement that /F P∂ ∂  must be equal to zero. Therefore,  
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where /P u∂ ∂  = derivative of the vertical load with respect to the horizontal displacement. 
 
For a conventional elastomeric isolator in bonded application, the prediction of critical load 
capacity is often conducted by two quasi-static methods. In the first method, the isolator is 
subjected to a constant vertical load, P, and a monotonically increasing horizontal 
displacement, u, until the isolator reaches its stability limit (Kh = 0). The point of equilibrium 
is determined directly from shear force-horizontal displacement response as the point where 
the slope equals zero. The second method includes shearing the isolator to a constant 
horizontal displacement, u and applying monotonically increasing vertical load, P, while 
monitoring a reduction in shear force F. Repeating this procedure for different horizontal 
displacement levels provides unique equilibrium trajectories (F vs P) from which the point of 
neutral equilibrium, thus critical point (ucr, Pcr) can be indirectly obtained. 
 
However, for a FREI in un-bonded application subjected simultaneously to vertical load and 
horizontal dynamic displacements, the evaluation of critical load needs to be appropriately 
considered. Particularly for performance-based design, it is important to extend the theoretical 
understanding on the stability of isolators based on static/quasi-static methods to dynamic 
behaviour and enhance the ability to predict their response when subjected to extreme 
earthquake loading. Thus, it should use a dynamic method under cyclic loading to evaluate 
the critical load capacity of isolator in an un-bonded application. 
 
In dynamic method, the un-bonded isolators undergo simultaneously a variation of the 
vertical load and cyclic horizontal displacement. Two important parameters such as the 
effective horizontal stiffness and damping factor are obtained from the hysteresis loops. The 
effective horizontal stiffness of isolator at a amplitude of horizontal displacement is defined as  
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where, Fmax, Fmin are maximum and minimum value of the shear force, 
           umax, umin are maximum and minimum value of the horizontal displacement. 
 



 

The equivalent viscous damping of isolator (damping factor, β) is computed by measuring the 
energy dissipated in each cycle (Wd), which is the area enclosed by the hysteresis loop. The 
formula to computed β is given by 
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where ∆max is the average of the positive and negative maximum displacements. 
 
Horizontal stiffness of an un-bonded FREI has two components, namely, horizontal secant 
stiffness and tangential stiffness. The present study is intended to determine the critical load at 
which the tangential stiffness becomes zero. In order to calculate the critical buckling load 
from the hysteresis loops obtained from the dynamic method, a curve is fitted to shear force-
displacement hysteresis. According to the previous studies by Toopchi-Nezhad, et al. [2008] 
and Raaf, et al. [2011], a method of fitting a polynomial to shear force-displacement 
hysteresis data is developed. The fitted curve, denoted as backbone curve, represents an 
idealized evaluate of horizontal response of an un-bonded FREI with the damping forces 
removed (Fig. 2).  

 
Fig. 2. Illustration of a fitted backbone curve in a hysteresis loop 

 
The total horizontal load, fb,i, experienced by the ith isolator is described as: 

                                                     , , ,( ) ( ) ( )b i sb i db if t f t f t= +                                                (6) 
where, fsb,i is stiffness force and fdb,i is the corresponding force due to damping.  
 
In a simple approach, the stiffness force can be modelled as a polynomial of order 5 given by: 
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where, vb(t) is horizontal displacement and kb,i(vb(t)) is the horizontal secant stiffness as a 
function of horizontal displacement: 
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The five parameters b0 to b4 are determined by applying a least squares fit to shear force-
displacement hysteresis data. 
 
The corresponding force due to damping, fdb,i represents an idealized Rayleigh damping: 

                        , ,( ) ( ) ( )db i b i bf t c t v t= × &                                                                                    (9) 
where cb,i(t) is damping coefficient dependent on a equivalent viscous damping ratio ξ, 
tributary mass of structure on each isolator (mi) and the horizontal secant stiffness kb,i(vb(t)): 
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The tangential stiffness of the ith isolator, ktb,i(vb(t)), as a function of horizontal displacement 
is 
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where the parameter b0 is the tangential stiffness of the ith isolator at vb(t)=0.  
 
According to the remark of the previous study by Stanton, et al. [1990], the tangential 
stiffness at zero horizontal displacement in a shear force-displacement hysteresis is referred to 
as the transverse stiffness (Kt) of the isolator. The transverse stiffness is not necessarily the 
minimum tangential stiffness in every fully reserved hysteresis loop under constant vertical 
load. However, the transverse stiffness represents the tangential stiffness at which zero 
horizontal stiffness first occurs under increasing vertical load. The vertical load corresponding 
to a transverse stiffness of zero (Kt = 0) is defined as the critical buckling load under cyclic 
loading for an un-bonded FREI. 

Prototype un-bonded fibre-reinforced elastomeric isolator 

Prototype FREI considered in this study were manufactured by METCO Pvt. Ltd., Kolkata, 
India. These are already in use in an actual building in Tawang, India. Figure 3 shows the 
view of a typical prototype isolator with component layers and finite element model. The 
isolator comprises of 17 layers of fibre reinforcement sheets interleaved and bonded between 
18 layers of rubber. Natural rubber and bi-directional (00/900) carbon fibre fabric are used in 
the isolator with the thickness of 5.0 and 0.55 mm for each layer of rubber and fibre, 
respectively. The physical dimensions and material properties of the isolator are shown in 
Table 1. 

Finite element modelling 

In this paper, fibre reinforced elastomeric isolator is numerically simulated using FE method 
in Ansys (v.14). The isolator is subjected to a variation of the vertical load and cyclic 
horizontal displacement to predict the stability of the isolator in an un-bonded application. FE 
analysis can address many issues which are rather difficult in closed-form solution. Analysis 
of isolator using FE method has some prominent advantages for the description of the detailed 
stress and strain of layers. Further, FE analysis can easily evaluate the response of the 
prototype isolator under high vertical load and large horizontal displacement, which is very 
difficult experimentally due to limitation of capacity in experimental facility. 
 

  R1

R18

R9 F9

   
         a) Cross section of isolator            b) FE model of isolator       c) Prototype FREI 

Fig. 3. The component of isolator 
 



 

 
Table 1. Geometrical details and material properties of the square isolator 

 
               Description                                                                              Values 
 
               Size of specimen, mm                                                         250x250x100 
               Number of rubber layer, (ne)                                                   18 
               Thickness of single rubber layer, (te), mm                                 5 
               Total height of rubber, (tr), mm                                               90 
               Number of fibre layer, nf                                                         17 
               Thickness of single fibre layer, (tf), mm                                  0.55 
               Shape factor, (S)                                                                     12.5 
               Aspect ratio, (R)                                                                     2.50 
               Initial shear modulus of elastomer, (Go), MPa                         0.90 
               Elastic modulus of carbon fibre reinforcement, (Ef), GPa         40 
               Poisson’s ratio of carbon fibre reinforcement, (υf)                     0.2 
 

General description of the model 

In this study, the isolator is modelled by elements having capabilities like large strain, 
incompressibility of material and nonlinear solution convergence. Incompressible material 
may lead to some difficulties in numerical simulation, such as volumetric locking, inaccuracy 
of solution, checkerboard pattern of stress distributions, or occasionally, divergence. Lagrange 
multiplier-based mixed u-P element is used to overcome incompressible material problems. 
These elements are designed to model material behaviour with high incompressibility such as 
fully or nearly incompressible hyper-elastic materials and nearly incompressible elasto-plastic 
materials (high Poisson’s ratio or undergoing large plastic strain). Largange multipliers extend 
the internal virtual work so that the volume constraint is included explicitly. Further, an 
updated Lagrangian approach has been used in this study to update the local coordinate 
system on the deformed configuration of element when the isolator is subjected to very large 
horizontal displacement. 
 
In the FE model of FREI, the elastomer is natural rubber which exhibits nonlinear behaviour. 
It is modelled using SOLID185 which is an eight-node structural solid element having three 
degrees of freedom at each node such as translations in the nodal x, y, and z directions. The 
fibre reinforcement is modelled using SOLID46 which is a 3-D eight-node layered structural 
solid designed to model layered thick shells or solid. Fibre-reinforcements are provided in the 
form of bi-directional (00/900) layers and bonded between rubber layers. Two rigid horizontal 
plates are considered at the top and bottom of the isolator to represent the superstructure and 
foundation. Vertical load and horizontal displacement are applied at the top plate which is 
allowed to move both in the vertical and horizontal directions, while all degrees of freedom of 
bottom plate are constrained. In order to study un-bonded FREI, surface-to-surface contact 
elements are used. Contact element CONTA173 is used to define the exterior rubber surfaces 
and target element TARGE170 is used to define the interior surface of top and bottom rigid 
plates. The contact element supports the Coulomb friction model to transfer the shear forces at 
the interface of contact and target surface. The model is meshed using hexagonal volume 
sweep. 
 
 
 



 

Material models used for the rubber and fibre reinforcement 

Material properties of isolator shown in Table 1 are used in FE model. Elastomer is modelled 
with hyper-elastic and visco-elastic parameters. Hyper-elasticity refers to materials which can 
experience large elastic strain that is recoverable. Rubber-like and many other polymer 
materials fall in this category. The constitutive behaviours of hyper-elastic materials are 
usually derived from the strain energy potentials. Further, hyper-elastic materials generally 
have very small compressibility. This is often referred to as incompressibility. Hyper-elastic 
materials have a stiffness that varies with the stress level.  
 
In this study, Ogden 3-terms model has been adopted to model the hyper-elastic behaviour of 
the rubber which is characterized by shear (Ge) and bulk (ke) modulus of the rubber and the 
vico-elastic behaviour is modelled by Prony Visco-elastic Shear Response parameter. The 
material parameters used are [Holzapfel , 1996].  
Ogden (3-terms): μ1 = 1.89x106; μ2 = 3600; μ1 = -30000; 

                    α1 = 1.3;          α2 = 5;       α3 = -2; 

Details of input loading 

The isolator is subjected to a variation of the vertical load to determine the effect of the 
vertical load on the dynamic properties and the predicting stability of un-bonded isolator 
under cyclic horizontal displacement. Elastomeric isolator is loaded simultaneously to the 
design vertical load of 350 kN, which is equal to the axial force in the column of the actual 
building and two fully reversed sinusoidal cycles of horizontal displacement of amplitude 80 
mm (0.89tr) (seen in Fig. 4) applied at the top steel plate. Amplitude of horizontal 
displacement is increased up to 135 mm (1.50tr). The vertical load is subsequently increased 
and the process is repeated starting at the displacement amplitude of 80 mm. The complete 
simulation is considered for three displacement amplitudes of 80, 112.5 and 135 mm (0.89tr, 
1.25tr and 1.50tr) and four vertical loads of 350, 550, 700 and 850 kN. In addition, the 
horizontal response of the un-bonded isolator is also conducted under the design vertical load 
of 350 kN and increasing horizontal displacement up to 2.00tr (180 mm) to investigate the 
rollout instability. 

Displacement
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Fig. 4. Imposed horizontal displacement history versus time 

Finite element model validation 

For the finite element model validation, the numerical results are compared with experimental 
findings from test conducted at the structural laboratory in IIT Guwahati, India for a prototype 
un-bonded isolator. This specimen with the same size, component layers and material 
properties as given in Table 1 is checked here before using in an actual building in Tawang, 
India. In this test, the specimen is subjected simultaneously to a constant vertical load of 350 
kN and three fully reversed sinusoidal cycles of horizontal displacement of amplitude 20 mm 



 

(0.22tr), 40 mm (0.44tr), 60 mm (0.67tr) and 80 mm (0.89tr). Comparisons of numerical and 
experimental results are conducted to evaluate the accuracy of FE model. 
 

                                      
      a) Deformed shape from numerical simulation           b) Deformed shape from experiment 

Fig. 5. Deformed shapes of an un-bonded isolator at displacement amplitude of 80 mm 
 
Deformed shapes of isolator as obtained from both numerical and experimental result at the 
horizontal displacement amplitude of 80 mm are shown in Fig. 5. The top and bottom surfaces 
of un-bonded FREI exhibit stable roll off the contact surfaces without any damage and 
resulting in development of very low tensile stresses in that zone. This leads to reduction of 
the effective horizontal stiffness of the isolator. It can be seen from this Fig.5 that the 
deformed shapes of the isolator from FE analysis are observed to be in very good agreement 
with that from experimental test. 
 
Fig. 6 shows the back bone curve for horizontal load-displacement relationships of the un-
bonded isolator for displacement up to 0.89tr (80 mm) as obtained from both experiment and 
FE analysis. Good agreement is observed between the experimental and FE analysis results. It 
can be seen from the figure, the horizontal load-displacement relation is nearly linear in the 
range of small displacement. Slope of this line is the effective horizontal stiffness of the 
isolator. When displacement increases, the response of un-bonded isolator becomes nonlinear 
due to the rollover. Consequently, the horizontal stiffness decreases with the increasing 
horizontal displacement. Fundamental period of un-bonded isolator thus increases with the 
decrease in stiffness, which result in increasing seismic mitigation capacity of isolator.  

 
Fig. 6. Horizontal load versus displacement of the un-bonded FREI 



 

 
Fig. 7. Comparison of hysteresis loops for the un-bonded isolator by FEA and 

experimental results 
Comparison of the hysteresis loops of the un-bonded isolator obtained as from experiment 
and FE analysis is presented in Fig. 7, which shows the discrepancy to be quite less. Thus, the 
adopted finite element analysis strategy is really effective in evaluating the dynamic response 
of un-bonded FREI under cyclic loading. 

Finite element analysis and discussion 

Critical buckling load capacity 

The objective of the dynamic stability analysis is to determine the critical buckling load at 
which the tangential stiffness becomes zero or the isolator would no longer be able to 
maintain positive incremental force resisting capacity. As noted above, the isolator is 
subjected to a variation of the vertical loads under cyclic horizontal displacement. According 
to the fitting method, the fitted backbone curves and corresponding hysteresis loops of the un-
bonded isolator for each vertical load and displacement amplitude up to 80 mm as obtained 
from FE analysis are shown in Fig. 8. The fitted backbone curve is obtained from the average 
value of shear forces at any given horizontal displacements in the corresponding hysteresis 
loop and described by a polynomial. It can be seen from the figure, each cycle of FE analysis 
result maintains both symmetric and comparable hysteresis loops for all the vertical loads 
investigated. Similarly, considering other displacement amplitudes (1.25tr and 1.50tr), the 
fitted backbone curves of the isolator under different vertical loads (350, 550, 700 and 850 
kN) are shown in Fig. 9.  

 
a) The vertical load of 350 kN 

 



 

 
b) The vertical load of 550 kN 

 

 
c) The vertical load of 700 kN 

 

 
d) The vertical load of 850 kN 

Fig. 8. Hysteresis loops with backbone curves of the isolator at displacement amplitude 
of 80 mm  

 

 



 

a) Displacement amplitude of 0.89tr (80 mm) 
 

 
b) Displacement amplitude of 1.25tr (112.5 mm) 

 
c) Displacement amplitude of 1.50tr (135 mm) 

Fig. 9. Fitted backbone curves of the un-bonded isolator at the horizontal displacement 
amplitudes of 0.89tr, 1.25tr and 1.50tr 

 

 
a) Displacement amplitude of 0.89tr (80 mm) 

 

 
b) Displacement amplitude of 1.25tr (112.5 mm) 



 

 

 
c) Displacement amplitude of 1.50tr (135 mm) 

Fig. 10. Tangential stiffness obtained from the first derivative of the fitted backbone 
curve at the horizontal displacement amplitudes of 0.89tr, 1.25tr and 1.50tr 

 
The values of tangential stiffness results are evaluated from Eq. (11) and are presented in Fig. 
10. The tangential stiffness at zero horizontal displacement, does not represent the minimum 
effective stiffness in a fully reversed sinusoidal cycle of horizontal displacement under low 
vertical loads of 350 and 550 kN. As the vertical load increases, the minimum slope of the 
backbone curve (tangential stiffness) occurs at zero horizontal displacement. At the large 
horizontal displacement and under large vertical loads, the transverse stiffness may acquire a 
negative value (Fig. 10c). Consequently, the vertical load corresponding to zero transverse 
stiffness is predicted by the approximation method.  
 
As discussed above, the vertical load corresponding to zero transverse stiffness is defined as 
the critical buckling load for an un-bonded FREI. The points corresponding to zero transverse 
stiffness of the un-bonded isolator for different amplitudes of horizontal displacement as 
obtained by approximation method are shown in Fig. 11. As expected, the transverse stiffness 
decreases with the increase of the vertical load. The critical buckling loads are obtained from 
the points which have zero transverse stiffness. The relation of these critical buckling loads 
versus the horizontal displacement amplitude is shown in Fig. 12. 
 

 
Fig. 11. Influence of the vertical load on transverse stiffness for the un-bonded isolator 

 



 

 
Fig. 12. The critical buckling load capacity of the un-bonded FREI. 

 
It can be seen from the Fig. 12 that the critical buckling load decreases with the increase of 
the horizontal displacement amplitude, and it is relatively great at low displacement 
amplitude. The critical load capacity as obtained from FE analysis is significantly higher than 
the design vertical load, as example, the critical loads are found to be 2.9, 2.5 and 2.3 times 
higher than the design vertical load at displacement amplitude of u = 0.89tr, 1.25tr and 1.50tr 
respectively. It is similar to the observation made by Raaf, et al. [2011] based on the 
experimental critical load carrying capacity of a scaled un-bonded isolator. From these results, 
it is thus realized that the prototype un-bonded specimen in the experimental tests didn’t 
obviously show any sign of damage and susceptibility to buckling under the design vertical 
load. 

The influence of vertical load on dynamic properties of the isolator 

During the course of evaluation of critical load carrying capacity of the isolator, the effect of 
the vertical loads on the characteristic properties of the un-bonded isolator under cyclic 
horizontal displacement is also investigated. The effective horizontal stiffness and damping 
factor of the isolator under the variation of the vertical loads and amplitudes of displacement 
obtained from equation (4) and (5) are provided in Table 2 and plotted in Fig. 13. 
 

Table. 2. Characteristic properties of un-bonded isolator 
 

                Vertical                             Amplitude of horizontal displacement 
                  load                  
                  (kN)            0.89tr (80mm)             1.25tr (112.5mm)                1.50tr (135mm)         

 
                                Keff

h (kN/m)    β (%)        Keff
h (kN/m)    β (%)        Keff

h (kN/m)    β (%)  
 
                  350            301.67        13.46            247.09         14.58             222.03       15.42 
                  550            288.09        15.61            233.67         16.92             209.04       17.87 
                  700            267.53        18.19            218.00         19.90             189.40       21.04 
                  850            238.72        21.69            194.13         24.45             165.19       27.00 
 
It can be seen from Fig. 13 that the effective horizontal stiffness of the un-bonded isolator 
decreases, while the equivalent viscous damping increases with the increase in the vertical 
load at a given amplitude of horizontal displacement. The decreases of the effective stiffness 
are found to be 20.9%, 21.4% and 25.6% under the vertical load ranging from 350 kN to 850 



 

kN at the displacement amplitudes of 0.89tr, 1.25tr and 1.50tr, respectively. At a given vertical 
load, the effective horizontal stiffness decreases and the damping factor increases with the 
increasing horizontal displacement amplitudes. It is presented in more detail later. Despite the 
reduction in the effective horizontal stiffness at high vertical loads, the un-bonded isolator 
could maintain symmetric force-displacement hysteresis under cyclic loading. 

 

 
Fig. 13. The relation of the effective horizontal stiffness and damping factor versus 

vertical load 

The rollout instability of the un-bonded FREI under design vertical load 

As observed, the un-bonded isolator is not susceptible to buckling under the design vertical 
load at the amplitude of displacement less than 1.50tr. In this case, it is necessary to 
investigate the horizontal response of the un-bonded isolator under design vertical load of 350 
kN and increasing horizontal displacement such that the original vertical faces of isolator 
establish full contact with the support surfaces, herein up to 2.00tr (180 mm). At the large 
horizontal displacement, rollover deformation of the un-bonded isolator occurs and the rollout 
instability may be observed. Rollout is defined as the instability of a recessed isolator under 
shear displacement. The objective is to determine the horizontal displacement amplitude at 
which the tangential stiffness will be zero under design vertical load. 
 
The shear force-displacement curve and horizontal secant stiffness-displacement relationship 
of the un-bonded isolator under the design vertical load and increasing horizontal 
displacement up to 2.00tr are shown in Figs. 14 and 15. It can be seen from these figures that 
positive force resisting capacity is observed throughout the displacement range between zero 
to 2.00tr, and hence the isolator remains stable. Thus, the rollout instability of the un-bonded 
isolator is not observed here, although the results provide a shear profile having four stages of 
the horizontal response of the un-bonded isolator. 
 



 

As observed in Fig.14, the horizontal stiffness of the un-bonded isolator is nearly linear under 
small horizontal displacement from zero to a displacement level at which the upper and lower 
contact surfaces of the isolator start to roll off the supports, denoted by ur, is at 18 mm 
(0.20tr). As the horizontal displacement is further increased, rollover deformation is observed 
in the isolator and the slope of force-displacement curve decrease to induce the reduction in 
the effective stiffness. At a certain displacement, portions of originally vertical faces of the 
isolator come in contact with the support surfaces. From these results from FE analysis, at u = 
uc = 1.40tr (126 mm) the appearance of initial contact is observed. More numbers of originally 
vertical faces make contact with the support surfaces under the additional increase in 
horizontal displacement. At u = uf = 1.88tr (169.2 mm), all the originally vertical faces of the 
un-bonded isolator are observed to be fully in contact with the supports. When displacement 
increases from ur to uc, the response of shear force-displacement is nonlinear, the effective 
horizontal stiffness of the isolator decreases due to rollover (seen in Fig. 15). Meanwhile, at 
the increasing displacement from uf to 2.00tr, the effective stiffness of the isolator increases 
due to the contact between the originally vertical faces of isolator and the support surfaces. 
When the displacement changes in uc to uf range, the effective horizontal stiffness is affected 
by two things: a reduction due to rollover deformation and an increase due to the contact 
between the originally vertical faces of isolator and the support surfaces. Thus, there exists a 
transition point in the range of uc and uf in which the increase in the effective horizontal 
stiffness of the isolator due to contact exceeds the decrease in the stiffness due to rollover, and 
here a hardening behaviour is observed at displacement uh = 1.70tr (153 mm). As seen from 
Fig. 15, the horizontal stiffness get the minimum value at the hardening point. At larger 
horizontal displacement u > 2.00tr, the increase in horizontal stiffness is very less and the 
deformed shape of the isolator maintains full contact between the originally vertical faces of 
the isolator and the supports. The horizontal stiffness of the isolator is found to increase by 
approximately 32% as the horizontal displacement increases from uh to 2.00tr. This hardening 
behaviour is advantageous as it can limit the horizontal displacement of the isolation system 
when subjected to extreme horizontal excitation events. The deformed shapes of the un-
bonded isolator at different horizontal displacements as obtained from FE analysis results are 
shown in Fig. 16. 
 

 
Fig. 14. Horizontal load–displacement curve of the un-bonded isolator. 

 



 

 
Fig. 15. Horizontal secant stiffness versus displacement 

 

       
                    a) 0.44tr (40mm)                                                  b) 1.00tr (90mm) 

       
                         c) 1.50tr (135mm)                                                    d) 2.00tr (180mm) 

Fig. 16. Deformed shapes of un-bonded isolator obtained from FE analysis results 

Conclusions 

This paper presents the prediction of stability of a prototype un-bonded fibre-reinforced 
elastomeric isolator based on response from finite element analysis. The prototype isolators 
with the same dimensions, component layers and material properties are in use in an actual 
building in Tawang, India. Size of the isolator is 250 x 250 x 100 mm with the shape factor of 
12.5 and aspect ratio of 2.50. In this study, the isolator is subjected to a variation of the 
vertical loads under cyclic horizontal displacement to determine the effect of the vertical load 
on the dynamic properties and the predicting stability of the isolator in an un-bonded 
application. In addition, the horizontal response of the isolator is also gradually increased to 
investigate the rollout instability under the design vertical load. The concluding remarks are 
as follows. 

• The critical buckling load of the isolator as obtained by dynamic stability analysis 
corresponds to the point in which tangential stiffness is reduced to zero. The critical 
buckling load of the isolator decreases with the increase of the horizontal 
displacement amplitude. 

• The critical load carrying capacity of the prototype isolator as obtained from FE 
analysis is significantly higher than the design vertical load. The critical loads are 
found to be 2.9, 2.5 and 2.3 times higher than the design vertical load at 
displacement amplitude of u = 0.89tr, 1.25tr and 1.50tr respectively. It establishes the 
observation that the actual isolator in experimental testes didn’t show any sign of 
damage and susceptibility to buckling under the design vertical load. 



 

• The effective horizontal stiffness of the un-bonded isolator decreases, while the 
damping factor increases with the increase in the vertical load at a given amplitude 
of horizontal displacement.  

• The effective horizontal stiffness of the un-bonded isolator decreases, while the 
damping  factor increases with the increase in amplitude of horizontal displacement 
at a given value of applied vertical load. 

• In the behaviour of the isolator under design vertical load, the effective horizontal 
stiffness decreases at the increasing horizontal displacement. However, under larger 
displacement up to 2.00tr the horizontal stiffness starts to increase due to the contact 
between the vertical faces of the isolator with the support surfaces. 

Acknowledgements 

These authors would like to acknowledge the contribution of METCO Pvt. Ltd., Kolkata, 
India, for manufacturing FREI and Structural Engng. Laboratory, IIT Guwahati, India for 
extending facility for experimental investigation. 

References 
[1] Buckle I.G., Kelly J.M. [1986], “Properties of Slender Elastomeric Isolation Bearings During Shake Table 

Studies of a Large-Scale Model Bridge Deck”, Joint Sealing and bearing systems for concrete structures, 
ACI, Detroit, Mich., Vol. 1, pp. 247–269. 

[2] Buckle I.G., Liu H. [1993], “Stability of elastomeric seismic isolation systems”, Proc. Sem. Seismic 
Isolation, Passive Energy Dissipation and Active Control, Applied Technology Council, Report ATC17-1, 
pp. 293-305. 

[3] Buckle I.G., Liu H. [1994],  “Experimental Determination of Critical Loads of Elastomeric Isolators at High 
Shear Strain”, NCEER Bulletin, Vol. 8(3), pp. 1-5. 

[4] Buckle I., Nagarajaiah S., Ferrell K. [2002], “Stability of Elastomeric Isolation Bearings: Experimental 
study”, Journal of Structural Engineering, ASCE, Vol. 128(1), pp. 3-11. 

[5] Han X., Kelleher C.A., Warn G.P., Wagener T. [2013], “Identification of the Controlling Mechanism for 
Predicting Critical Loads in Elastomeric Bearings”, Journal of Structural Engineering, ASCE, Vol. 139(12), 
04013016. 

[6] Haringx J.A. [1948], “One highly compressible helical springs and rubber rods and their application for 
vibration-free mountings. I.”, Philips Res. Rep., Vol. 3, pp. 401-449. 

[7] Haringx J.A. [1949a], “One highly compressible helical springs and rubber rods and their application for 
vibration-free mountings. II.”, Philips Res. Rep., Vol. 4, pp. 49-80. 

[8] Haringx J.A. [1949b], “One highly compressible helical springs and rubber rods and their application for 
vibration-free mountings. III.”, Philips Res. Rep., Vol. 4, pp. 206-220. 

[9] Holzapfel G.A. [1996], “On large strain viscoelasticity: Continuum formulation and finite element 
applications to elastomeric structures”, International Journal for Numerical Methods in Engineering, Vol. 
39, pp. 3903-3926. 

[10] Iizuka M. [2000], “A macroscopic model for predicting large-deformation behaviours of laminated rubber 
bearings”, Engineering Structures, ELSEVIER, Vol. 22(4), pp. 323-334. 

[11] Kelly J.M. [1999], “Analysis of Fibre-Reinforced Elastomeric Isolators”, Earthquake Engineering Research 
Center, University of California, Berkeley, USA, JSEE, Vol. 2(1), pp. 19-34. 

[12] Kelly J.M., Konstantinidis D.A. [2011], “Mechanics of Rubber Bearings for Seismic and Vibration 
Isolation”, John Wiley & Sons, Ltd, Publication. 

[13] Kelly J.M., Calabrese A. [2012], “Mechanics of Fibre Reinforced Bearings”, PEER Report, 2012/101, 
Pacific Earthquake Engineering Research Center, University of California, Berkeley, USA. 

[14] Koh C.G., Kelly J.M. [1989], “Viscoelastic Stability Model for Elastomeric Isolation Bearings”, Journal of 
Structural Engineering, ASCE, Vol. 115(2), pp. 285-302. 

[15] Nagarajaiah S., Ferrell K. [1999], “Stability of Elastomeric Seismic Isolation Bearings”, Journal of 
Structural Engineering, ASCE, Vol. 125(9), pp. 946-954. 

[16] Osgooei P.M., Tait M.J., Konstantinidis D. [2014], “Finite element analysis of unbonded square fibre-
reinforced elastomeric isolators (FREIs) under lateral loading in different directions”, Composite Structures, 
ELSEVIER, Vol. 113, pp. 164-173. 

[17] Raaf M.G.P.D, Tait M.J., Toopchi-Nezhad H. [2011], “Stability of Fibre-reinforced Bearings in an Un-
bonded Application”, Journal of Composite Materials, SAGE, Vol. 45(18), pp. 1873-1884. 



 

[18] Sanchez J., Masroor A., Mosqueda G., Ryan K. [2013], “Static and Dynamic Stability of Elastomeric 
Bearings for Seismic Protection of Structures”, Journal of Structural Engineering, ASCE, Vol. 139(7), pp. 
1149-1159. 

[19] Southwell, R.V. [1932], “On the analysis of experimental observations in problems of elastomer stability”, 
Proc. R. Soc. Lond. A, Vol. 135(828), pp. 601-616. 

[20] Stanton J.F., Scroggins G., Taylor A.W., Roeder C.W. [1990], “Stability of Laminated Elastomeric 
Bearings”, Journal of Engineering Mechanics, ASCE, Vol. 116(6), pp. 1351-1371. 

[21] Toopchi-Nezhad H., Tait M.J., Drysdale R.G. [2008a], “Testing and Modelling of Square Carbon Fibre-
reinforced Elastomeric Seismic Isolators”, Structural Control and Health Monitoring,  Vol. 15, pp. 876-900. 

[22] Toopchi-Nezhad H., Tait M.J., Drysdale R.G. [2008b], “A Noval Elastomeric Base Isolation System For 
Seismic Mitigation of Low-rise Buildings”, Proceedings of the 14th World Conference on Earthquake 
Engineering, October 12-17, Beijing, China. 

[23] Toopchi-Nezhad H., Drysdale R.G., Tait M.J. [2009a], “Parametric Study on the Response of Stable 
Unbonded-Fibre Reinforced Elastomeric Isolator (SU-FREIs)”, Journal of Composite Materials, SAGE, 
Vol. 43(15), pp. 1569-1587. 

[24] Toopchi-Nezhad H., Tait M.J., Drysdale R.G. [2009b], “Simplified Analysis of a Low-rise Building 
Seismically Isolated with Stable Un-bonded Fibre Reinforced Elastomeric Isolators”, Canadian Journal of 
Civil Engineering, Vol. 36(7), pp. 1182-1194. 

[25] Toopchi-Nezhad H., Tait M.J., Drysdale R.G. [2011], “Bonded versus Unbonded Strip Fibre Reinforced 
Elastomeric Isolators: Finite Element Analysis”, Composite structures, ELSEVIER, Vol. 93, pp. 850-859. 

[26] Vemuru V.S., Nagarajaiah S., Masroor A., Mosqueda G. [2014], “Dynamic Lateral Stability of Elastomeric 
Seismic Isolation Bearings”, Journal of Structural Engineering, ASCE, Vol. 140(14), A4014014. 

[27] Weisman J., Warn G.P. [2012], “Stability of Elastomeric and Lead-Rubber Seismic Isolation Bearings”, 
Journal of Structural Engineering, ASCE, Vol. 138(2), pp. 215-223. 

 


	References

