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Abstract
In this paper, an extended car-following model is derived by considering vehicle’s backward
looking effect which is based on the optimal velocity model and the optimal velocity (OV)
function is extended by introducing variable safety distance. Also, a new control signal
including more comprehensive information is introduced on the viewpoint of feedback control.
Furthermore, the stability condition for the model is derived and the numerical simulation is
carried out to investigate the advantage of the proposed model with control signal which can
alleviate the traffic jams efficiently. The results are also consistent with the theoretical
analysis correspondingly.
Keywords: Car-following model, Feedback control method, Stability condition, Variable
safety distance.

Introduction

In recent decades, traffic flow theories have attracted much attention of scientists’ and
researchers’ in the study of mathematical physics and control theory. Because the traffic
congestion has closely influenced human’s daily life up to present, such as traffic accident,
fuel consumption and air pollution. As for traffic behavior, many approaches have been
introduced to investigate the properties of traffic flow, and obtained some significant results
[1-5].

Modern traffic is one of the most significant symbols of social modernization which provides
much convenience for our daily life. However, traffic congestion problem is also being
increasingly deteriorated because of the huge traffic flux. Back to 1953, Pipes [6] developed
a car following model to restrain the traffic congestion and provided some relevant results
through theoretical analysis, which assumed that the behind vehicle adjusted its behavior
following the preceding vehicle’s action in the same lane. After that, Newell [7] proposed a
car-following model with a differential equation and gave some graphic description for the
optimal velocity (OV) function in 1961. Then it’s worth pointing out that an vital extended
car-following model called optimal velocity model (OVM) was introduecd by Bando et al. [8].
In the OVM, the acceleration of the vehicle at the same time was determined by the difference
between actual velocity and an optimal velocity. Based on this (OVM), a great deal of car-
following models have been extended by adding more comprehensive information into the
real traffic system [9-12].



In 1999, Konishi et al. [13] developed a chaotic car-following model by setting time delay
feedback control signals, and studied single-lane traffic operation without reverse
phenomenon under an open boundary condition. In 2007, Han et al. [14] put forward to a
modified CM car-following model and found that their model could promote the stability of
traffic flow. Recently, Zheng et al. [15] presented an improved car-following model with
considering lateral effect and its feedback control research, and the obtained results were
correspond to the theoretical analysis. Additionally, other researches related to the control
scheme have been carried out in a piecemeal form gradually [16][17].

Even in the physical community, the car-following model is still a hot topic. But up to now,
we can hardly see studies concerning car-following in a viewpoint of control methods. So in
this paper, it’s necessary to provide a modified car-following model considering vehicle’s
backward looking effect based on the control theory which means a new control scheme that
takes more comprehensive information into account is proposed. Detail definitions are in the
section 3.

The outline of this paper is organized as follows. In Sec. 2, the modified car-following model
considering vehicle ’ s backward looking effect is presented, and its stability condition is
analyzed via control method. In Sec. 3, the model including control signal is established and
feedback control theory is used to analyze the stability conditions. In Sec. 4, several numerical
simulations are carried out to verify the theoretical results. Conclusions are given in Sec. 5.

Car-following model and its stability analysis

Modified model

This research is based on OVM [8] in 1995. The dynamic equation is described as
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a is the sensitivity of driver and is the inverse of delay
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where maxv is the maximum velocity and ch is the traditional safety distance; sT is



the time step unit, and d is the reaction coefficient for  tvn .

Stability analysis

The dynamical equation is rewritten as follows:

           1 1

1

( ) , , ,

( ) ( ) ( ),

n
p n n b n n n

n
n n

dv t a pV y t v t qV y t v t v t
dt

dy t v t v t
dt

 



      

  


(5)

where ( ) ( )n ny t x t  .

We suppose the desired velocity of vehicles and comprehensive distance are *v and *y , so the
steady state of the following vehicles is

* *[ ( ), ( )] [ , ] .T T
n nv t y t v y (6)

Then, consider an error system around steady state (6), that is,
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After Laplace transformation for traffic system (7), we can get
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where     tvLsV nn  ,     tyLsY nn  ,  .L denotes the Laplace transform and s is a
complex variable.

In reality, based on the control theory, we obtain the transfer function ( )G s , that is
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Thus, traffic jams will never occur in the traffic flow system if ( )p s is stable and ( ) 1G s

 .

In fact, based on the Hurwitz stability criterion, we can get that  sp is stable. So, the stability
condition is given by
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Feedback control scheme

In this part, an extended feedback control signal including more comprehensive information is
added into system (1), so we have
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where  is the reaction coefficient for the relative velocity ( )nv t and  is another reaction
coefficient for the ( ( ) )( ( ))n c c nH y t h h y t  . Function (.)H is described as
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As ( ) 0v
n ny t h  , our feedback control signal ( )nu t is

2( ) ( ) ( ( ) ),v
n n n nu t v t y t h     (15)

Under this condition, the dynamical Eq.(12) can be described as
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Similar to the analysis of second part, the transfer function ( )G s can be obtained after
Laplace transform.
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In fact, the traffic jams will be weaken if  sp~ is stable and   1~



sG .

Furthermore,  jG~ must be smaller than 1 for all positive 2 to ensure stability. Hence, the
stability criterion of the extended mode is given by
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Numerical simulations

In this simulations, the parameters for the improved car-following model are set
as * 5.0y m , 12a s , * 20 /v m s , 8.0p , 2.0q , 3.0d and 0.1 .T s It is assumed that
all vehicles have the same parameters. The initial condition is the steady state for the model,
and the initial positions and speeds are set as *(0) ,ny y *(0) ,nv v and 120N  is the total
number of vehicles. We consider a case where the leading vehicle stops suddenly
for (0) 0, 100 103.nv t nT   

Figure. 1 shows the velocity-time patterns of the 1st, the 25th and the 50th vehicles with
different parameter values of  . It can be seen from Fig. 1 that with the control signal, as the
reaction coefficient  decreases from 0.85 to 0.35, the stability of the traffic system is
strengthened. And we can find that vehicles can reach steady running state in relatively short
time as the reaction coefficient  decreases. The amplitude of the velocity for the 25th vehicle
decreases and the 50th vehicle runs smoothly.

Figure 1. Numerical simulations for the modified car-following model with

0.65  , 25 /maxv m s , 0.85  (left); 0.65  , 25 /maxv m s , 0.35  (right)

Figure 2. Numerical simulations for the modified car-following model with
0.35  , 25 /maxv m s , 0.15  (left); 0.35  , 25 /maxv m s , 0.65  (right)



Figure. 2 shows the velocity-time patterns of the 1st, the 25th and the 50th vehicles with
different parameter. It can be seen from Fig.2 that with the control signal, as the reaction
coefficient increases from 0.15 to 0.65, the stability of the traffic system is strengthened. And
we can find that vehicles can reach steady running state in relatively short time as the reaction
coefficient increases. The amplitude of the velocity for the 25th vehicle decreases and the
50th vehicle runs placidly. The simulation results of Fig. 1 and Fig. 2 illustrate that feedback
control plays an vital role in vehicle dynamic driving behavior.

Figure 3. (a) Space-time plot of the traffic system (b) Temporal velocity behavior of the
first,25th and 50th vehicles ( 0, 0, 20 /maxv m s    )

Figure 4. (a) Space-time plot of the traffic system (b) Temporal velocity behavior of the
first, 25th and 50th vehicles ( 0.75, 0.35, 25 /maxv m s    )

Then, we simulate the system with the modified control scheme. As the stability condition in
Eq. (11) and Eq. (18) is met, a comparison between the results in Figs. 3-4 illustrate that with
control signal, although the maximum speed is larger compared with Fig. 3, as we choose the
right parameters ( 0.75, 0.35, 25 /maxv m s    ), it can be seen that vehicles can reach
more steady running state in relatively short time. The amplitude of the velocity for the 25th
vehicle decreases and the 50th vehicle runs more smoothly. Thus, it can be concluded that the
proposed car-following model is useful for suppressing the increasingly serious traffic jams.

Conclusions

In this paper, an extended car-following model is established considering vehicle’s backward
looking effect. The optimal velocity (OV) function is extended by introducing variable safety
distance. The effect of some important information (such as the relative velocity and the



difference between safety variable distance and headway) on the traffic current and the
jamming transition has been investigated with the use of numerical and analytic methods. The
stability condition is obtained for the new model via control method. The numerical
simulation is used to show the advantage of the proposed model with control scheme. The
results are consistent with the theoretical analysis.

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No.
11372166]; the Scientific Research Fund of Zhejiang Provincial, China [Grant Nos.
LY15A020007, LY15E080013]; the Natural Science Foundation of Ningbo [Grant Nos.
2014A610028, 2014A610022]; the project T32-101/15-R; and the K.C. Wong Magna Fund in
Ningbo University, China.

References

[1] Kerner, B. S. and Rehborn, H. (1996) Experimental properties of complexity in traffic flow, Phys. Rev. E
53, 4275–4278.

[2] Li, Z. P. and Liu, Y. C. (2006) Analysis of stability and density waves of traffic flow model in an ITS
environment, Eur. Phys. J B 53, 367–374.

[3] Tang, T. Q., Li, J. G., Wang, Y. P. and Yu, G. Z. (2013) Vehicle ’ s fuel consumption of car-following
models, Sci China Tech Sci, 56, 1307–1312.

[4] Li, Y. F., Sun, D. H., Liu, W. N., Zhang, M., Liao, X. Y. and Tang L. Modeling and simulation for
microscopic traffic flow based on multiple headway, velocity and acceleration difference, Nonlinear
Dynamics 66, 15–28.

[5] Zhu, W. X. (2008) A backward looking optimal current lattice model. Commun. Theor. Phys 50, 753–756.
[6] Pipes, L. A. (1953) An operational analysis of traffic dynamics J. Appl.Phys 24, 274–281.
[7] Newell, G. F. (1961) Nonlinear effects in the dynamics of car-following, Oper.Res 9, 209–229.
[8] Bando, M., Hasebe, K., Nakayama, A., Shibata, A. and Sugiyama, Y. (1998) Analysis of optimal velocity

model with explicit delay, Phys. Rev. E 58, 5429–5435.
[9] Ge, H. X., Cheng, R. J. and Dai, S. Q. (2005) KdV and kink-antikink solitons in car-following models,

Physica A 357, 466–476.
[10]Tang, T. Q., Wu, Y. H., Caccetta, L. and Huang, H. J. (2011) A new car-following model with consideration

of roadside memorial, Phys. Lett. A 375, 3845–3850.
[11]Ge, H. X., Dai, S. Q., Xue, Y. and Dong, L. Y. (2005) Stabilization analysis and modified Korteweg-de

Vries equation in a cooperative driving system, Phys. Rev. E 71, 066119.
[12]Peng, G. H. and Sun, D. H. (2010) A dynamical model of car-following with the consideration of the

multiple information of preceding cars, Phys. Lett. A 374, 1694–1698.
[13]Konishi, K., Kokame, H. and Hirata, K. (2000) Decentralized delayed-feedback control of an optimal

velocity traffic model, Eur. Phys. J B 15, 715–722.
[14]Han, X. L., Jiang, C. Y., Ge, H. X. and Dai, S. Q. (2007) A modified coupled map car-following model

based on application of intelligent transportation system and control of traffic congestion, Acta Phys. Sin 56,
4383–4392.

[15]Zheng, Y. Z., Zheng, P. J. and Ge, H. X. (2014) An improved car-following model with considering lateral
effect and its feedback control research, Chin. Phys. B 23, 020503.

[16]Sun, D. H., Zhou, T., Liu, W. N. and Zheng, L. J. (2013) A modified feedback controlled car-following
model considering the comprehensive information of the nearest-neighbor leading car, Acta Phys. Sin 62,
170503.

[17] Jiang, R., Hu, M. B., Zhang, H. M., Gao, Z. Y., Jia, B. and Wu, Q. S. (2015) On some experimental features
of car-following behavior and how to model them, Transportation Research Part B 80, 338–354.


	Keywords: Car-following model, Feedback control me
	Introduction
	Car-following model and its stability analysis
	Modified model
	Stability analysis
	Conclusions
	Acknowledgements

