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Abstract 

In this paper, the edge-based smoothed finite element (ES-FEM) method and 

application of elemental radiators is presented to solve the free vibration and sound 

radiation problems for the rectangular plates. The edge-based smoothed finite element 

is utilized for the modeling of plate structure. Three-node triangular elements is used to 

discretize the three-dimensional (3D) shell, due to its convenience for generating and 

good adaptability for complicated geometries. The system stiffness is obtained by using 

the strain smoothing technique over the smoothing domains, such as edge-based 

domain. Consequently, the employing of the strain smoothing technique can provide a 

proper softening effect to the FEM model, and cure the “overly-stiff” property existing 

in the standard FEM. Hence, this implementation can significantly improve the 

accuracy of the solution for free vibration. The application of elemental radiators can 

rapidly compute the sound radiation of the rectangular plates without fluid elements.  

Keywords: the rectangular plates, free vibration and sound radiation, ES-FEM, 

elemental radiators.  

1. Introduction 

Nowadays, the plates have been used widely in many branches of structural 

engineering, such as aircraft, ships, bridges, buildings, etc. The vibration and sound 

radiation of plates have attracted engineering’s more attention, due to the bad influence 

to structure’s strength and acoustic performance.  

Many researchers have carried out the analysis of plates. M. Levinson[1] studied linear 

elastic theoretical solution to free vibration of the simply-supported plate. Raske, 

Schlack and Fryba[2][3] researched dynamic response of isotropic rectangular plate 



under various moving loads. Gbadeyan and Oni[4] also computed dynamic response of 

rectangular plate under various moving loads based on the improved 

integral transformation method. The radiation resistance and efficiency of the plate in 

frequency domain was computed by using the approximate method, which has been 

widely applied in many research[5][6] . Williams and Maynard[7] used Rayleigh integra l 

and Fast Fourier Transformation to solve the sound radiation of a plate. 

Owing to limitations of the analytical methods, the finite element method (FEM) 

becomes one of the most popular numerical method to analyze plate structures. In the 

practical applications, lower-order Reissner-Mindlin shell elements are preferred due 

to its simplicity and efficiency. However, these low-order shell elements have a defect 

of the shear locking phenomenon, which has the root of incorrect transverse forces 

under bending. In order to eliminate shear locking, the discrete shear gap (DSG)[8] was 

used.  

In order to overcome the “overly-stiff” problem in FEM, Liu[9] firstly proposed that 

the combination of the strain smoothing technique[10] and FEM, so-called the 

Smoothed Finite Element (S-FEM). In S-FEM models, the finite element mesh is used 

similarly as in the FEM models, however, the weak form is evaluated based on 

smoothing domains created from the entities of the element mesh such as cells (CS-

FEM), or nodes (NS-FEM), or edges (ES-FEM)[11]. These smoothing domains are 

linear independent and hence ensure stability and convergence of the S-FEM models. 

Due to the easy and automatic generation for complicated domains, the three-node 

triangular element. In this work, the discrete shear gap technique (DSG) is combined 

the ES-FEM to give a so-called ES-DSG element for plate analysis. The ES-DSG has 

a superior property compared to standard FEM. The employing of the strain smoothing 

technique can provide a proper softening effect to the FEM model, and cure the 

“overly-stiff” property existing in the standard FEM.  

2. Three-node Reissner-Mindlin shell element 

The middle surface of plate is defined as the reference plane, and let u  v  w，，  be the 

displacements of the middle surface in the ,  ,  x y z  direction, let , ,x y z      be the 

rotation in the y, x, z direction, which is shown in Fig. 1. 
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Figure 1.  Reissner–Mindlin flat plate 

The six independent freedom of three-node shell element at any node can be written 

as below, as is shown in Fig. 2. 

 
T[ ]x y zu  v  w        u    (1) 

 

Figure 2.  The three-node Reissner–Mindlin shell element 

Therefore, the membrane strain 
m , the curvature of the shell element   and the 

shear strain   are constructed as 
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For the free vibration analysis of Reissner–Mindlin shell, the standard Galerkin weak 

form can be written as 
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where m  is the mass matrix containing the density of the material and thickness of 

the plate t   as 
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Discretize the problem domain   into eN  finite elements, and 
1

Ne

ee
    and  

i j   (i ≠ j). Consequently, the finite element displacement solution 

T
h   v  w      x y zu      u  of the Reissner–Mindlin shell model is defined as 
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where 6I  is the 6th rank unit matrix; nN  is the total number of nodes in the problem 

domain; ( )IN x  is the shape function at Ith node; 
T

          I I I I xI yI zIu v w      d  is 

the displacement vector of Ith node. 

In order to eliminate the shear locking, the “Discrete Shear Gap” method is adopted. In 

each triangular element, the shear strain can be written as  
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where 
xiw  and 

yiw  are Discrete Shear Gap at Ith node given by  
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The ,  ,  ,  a b c d  in Eq.11 are defined as 
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where ix  and iy  (i=1-3) are the coordinates of the nodes in a triangular element.  

Therefore, the membrane, bending and shear strains can be expressed in the matrix 

forms as 
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Thus, the global stiffness matrix K  can be expressed as  
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and the global mass matrix M  can be expressed as 
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and the load vector F  can be defined as 

 
b dΩ+p


 F N f   (19) 

For free vibration analysis of the Reissner–Mindlin shell model, we get 
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where   is the natural frequencies and d  is the mode shape vectors.  

3. Edge-based smoothed finite element method 

The edge-based strain smoothing technique for shell elements will be implemented in 

the sub-domain based on edge of triangular elements. The domain is firstly discretized 

as triangular elements as the standard FEM. However, the numerical integrations in Eq. 

(17) are no longer based on triangular elements, but based on the smoothing domain 

 1,  2,  Ω   ,k k N  , in which N  is the total number of the edge in the problem 

domain. The smoothing domain of each edge k  is constructed by connecting two end-

points of the edge and the middle point of its surrounding triangular elements, as is 

shown in Fig. 3.  



 

Figure 3.  The edge-based smoothing domain 

By using the edge-based strain smoothing technique, the integration over the whole 

triangular elements can be transform to an integral over the whole smoothing domains. 

Then, the smoothed global stiffness matrix can be rewritten as  
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Employing the strain smoothing operation over each smoothing domain on the  

membrane, bending and shear strains of the shell elements, the smoothing membrane, 

bending and shear strains over the domain  Ω  k  can be written as  
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where Ak  is the area of the smoothing domain Ωk , and Γk  is the boundary of the 

smoothing domain Ωk . 



After performing the integral, the smoothed membrane, bending and shear strains in the 

smoothing domain Ωk
 can then be written in following matrix 
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where
kM is the total number of the nodes in the smoothing domain Ωk

. 

4. The sound radiation analysis of plate 

By employing the Rayleigh surface integral, each triangular element on the plate can 

be treated as a simple point source (elemental radiator) that radiating sound. Therefore, 

the sound pressure[12] at an arbitrary observation location Q of the plate is written as 

below, as is shown Fig. 4 
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where k  is the wave number, 0  is the air density, S  is the area of the plate, r   

is the distance between the observation location Q  and the centroid P  of a triangular 

element. 

 

Figure 4.  The sound pressure at an arbitrary observation location Q 

The sound intensity at the observation location Q  is defined as  
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where ( )v Q  is the complex conjugate velocity value at the observation location Q . 

The sound power radiating into the semi-infinite space over the plate can be written as  
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where 'S  is an arbitrary surface which cover the plate. 

Substituting Eq. 28 and Eq. 29 into Eq. 30, and supposing 'S  is coincide with S , we 

can deduce[13]  
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where ( )v P  is the normal velocity at location P , ( )v Q  is the normal velocity at 

location Q . 

By discretizing Eq. 31 into a finite form 
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where N   is the total number of triangular elements, ( )iv C  is the normal centroid  

velocity of ith triangular element, and ΔS  is the area of a triangular element. 

 

Figure 5.  the discretization of a rectangular plate 



Z  is the sound resistance matrix defined as below[14] 

 

1,2 1,

1,2 1,

2,1 2,2 2

0
2,1 2,

0

,1 ,2

,1 ,2

sin sin
1

sin sin
1

4π

sin sin
1

N

N

N

N

N N

N N

kr kr

kr kr

kr kr
S

kr kr
Nc

kr kr

kr kr

 

 
 
 
 
 

  
 
 
 
 
 

Z   (33) 

where 
0c  is the sound velocity in air. 

Finally, the sound power level pL  of the plate can be defined as 

 

0

10logpL
W

W
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where 0W  is the reference sound power defined as 10-12 W. 

5. Numerical example  

Consider two rectangular plates that is simply supported and clamped. The length, 

width and thickness of the plates are 0.5 m, 0.4 m and 0.005m, respectively. The 

material parameters of the plates are given by Young’s modulus 210 GPa; Poisson’s 

ratio  0.3v   and the density 3 7850 /kg m  . A uniform discretization of 20 × 16 

elements is used, as shown in Fig. 6. 

 

Figure 6.  The mesh of a rectangular plate 



For free vibration analysis, the eigen frequencies of the plates by the ES-FEM, together 

with the reference of the commercial software ANSYS are listed in Table 1 below. Fig. 

7-9 is the mode shape of the clamped plate computed by ES-FEM and the ANSYS, Fig. 

10-12 is the mode shape of the simply supported plate by ES-FEM and the ANSYS. 

Table 1. The eigen frequencies results (Hz) of the plates from different methods  

 The simply supported plate The clamped plate 

Mode 

ES-

FEM 

(20 × 

16) 

ANSYS 

(20× 16) 

ANSYS 

(high quality 

mesh) 

ES-

FEM 

(20 × 

16) 

ANSYS 

(20 × 16) 

ANSYS 

(high quality 

mesh)) 

1 126.0 127.3 125.4 235.0 238.2 232.3 

2 275.6 279.4 272.3 417.6 425.3 407.8 

3 360.6 365.6 355.3 543.9 556.6 531.8 

4 512.4 523.8 501.0 715.1 729.3 692.5 

5 529.9 540.5 517.3 726.9 751.3 693.0 

 

Figure 7. The first mode shape of the clamped plate  



 

Figure 8. The second mode shape of the clamped plate 

 

Figure 9. The third mode shape of the clamped plate 

 

 

Figure 10. The first mode shape of the simply supported plate  



 

Figure 11. The second mode shape of the simply supported plate  

 

Figure 12. The third mode shape of the simply supported plate  

From Table 1, it is observed that the results of the ES-FEM are more accurate than 

results of the commercial software ANSYS with the same mesh. 

As shown in Fig. 13, the rectangular plate is subjected to a normal concentrated force 

1 N on centroid of the surface. Then, computing sound power level of the plates from 

1-1000 Hz in semi-infinite domain, together with the reference of the commercia l 

software LMS Virtual.Lab are listed in Fig. 14-15. The density and velocity of air are 

defined as 1.205 kg/m3 and 340 m/s. 

 

Figure 13.  The rectangular plates with a concentrated force  
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Figure 14.  The sound power level of the clamped plates  

 

Figure 15.  The sound power level of the simply supported plates 

From Fig. 14-15, the results from elemental radiators are similar to the results from the 

Virtual.Lab, especially for the first peak. Due to the difference of two methods above 

in free vibration analysis, the rear peaks are slightly noncoincidence. 

6. Conclusion   

In this work, the edge-based smoothed finite element method with the Discrete Shear 

Gap is used in free vibration analysis of the plates, and the application of elementa l 

radiators is utilized in sound radiation analysis. Through the numerical examples, some 

conclusion can be drawn below: 



(1) The ES-DSG can give better accuracy than standard FEM in free vibration analys is 

using the same element mesh. 

(2) The application of elemental radiators can not only provide a rapid computation, 

but manifest a desirable accuracy. 
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