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Abstract

The GSM-CFD solver was firstly proposed by Liu and Xu [1] in 2008 for solving
compressible flow problems using unstructured triangular meshes. Strategies for constructions
of smoothing domains and algorithms for gradient approximations were introduced in detail
for 2D problems. Different from the conventional numerical methods for gradient
approximation, the first- and second-order spatial derivatives are calculated using GSM in a
compact and conservative manner. Very good results can be achieved efficiently by properly
choosing the smoothing functions and quadrature schemes on even highly distorted
unstructured meshes. In a later paper [2], an adaptive GSM-CFD solver was developed to
better capture the shock location in 2D inviscid transonic flows. More recently, this adaptive
solver was improved to solve the shock-wave boundary-layer interaction problems [3]. In both
methods, the GSM-CFD solver is coupled with a solution-based adaptive mesher to
automatically generate finer mesh around the shock-wave zone.

Besides the compressible flows, the GSM-CFD solver can also be used to solve the steady-
state and transient incompressible flow problems [4, 5, 6] using the artificial compressibility
method [7]. The incompressible GSM-CFD solver was used to solve 2D pulsatile blood flow
within rigid vessel, and the flow phenomena in stenosed vessels and arteries with aneurysm were
investigated [5]. The 3D incompressible GSM-CFD solver was firstly introduced in [6], and the
simulations of blood flow in carotid bifurcation were used as the numerical example. Same
as the compressible flow problems, the incompressible GSM-CFD solver inherits the favorable
features including being stable, accurate and efficient, and more importantly, insensitive to mesh
qualities. These features make the newly developed GSM-CFD solver a competitive alternative
to conventional finite volume or finite element methods.

Since we have flexible choices of smoothing functions and integration schemes, it is always an
important issue to find a reasonable balance between efficiency and accuracy. The piecewise
constant smoothing function with edge-midpoint integration scheme is mostly used in the
previous studies due to its simplicity, and it works very well on the unstructured triangular
meshes. However, recent research [3] indicated that the accuracy of this method on hybrid
mesh was not as accurate as on triangular mesh, and an one-point quadrature scheme was
devised to improve the accuracy of GSM by adding more integration points along the
smoothing domain boundaries. A matrix-based algorithm and the corresponding generalized
edge-based data structure were also devised [3, 6] to further improve the numerical efficiency
of gradient approximation using GSM. The usage of piecewise linear smoothing function was
introduced for triangular mesh and compared with conventional piecewise constant one [8]. It
was concluded that the accuracy had improved significantly with the application of
linearly-weighted smoothing operation instead of linear interpolation.

To further improve the numerical efficiency of the GSM-CFD solver, the geometric multigrid
method [9, 10, 11] is adopted to accelerate convergence. The coarser mesh is generated by



Table 1: Effects of multigrid technique

Grid level Time/iteration Total number of iteration Total computation time(s)
0 0.078 4219 329
1 0.177 1700 302
2 0.195 1092 212
3 0.199 817 163
4 0.203 729 148

merging neighboring control volumes around a seed point, and new vertex-based control
volumes are created correspondingly. Therefore, there is no need to generate independent
meshes for the coarse levels. There are two advantages of using multigrid method: (1) larger
time steps can be used on the coarser meshes to reduce the numerical effort; and, (2) the low
frequency components of the solution error are effectively damped on coarse meshes, and the
convergence is significantly accelerated.

In the proposed solver, the first-order accurate discretization of the convective terms is
employed, and the viscous terms are calculated using the average of gradients on the coarse
meshes. The GSM approximations of flow variables are only employed on the finest mesh to
ensure the accuracy of the final results.

The laminar flow around NACA 0012 airfoil is used as numerical example to show the
effectiveness of the multigrid GSM-CFD solver. The comparisons among different mesh levels
are summarized in Table 1. We can see that the multigrid can greatly accelerate convergence
and reduce the total computational time.
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