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Abstract 

Determination of optimal placements of sensors/actuators in large structures is a difficult job 
as large number of possible combinations leads to a very high computational time and 
storage. Therefore this kind of optimization problem demands a parallel implementation of 
the optimization schemes. Island model genetic algorithm (GA) being inherently parallel has 
been used for searching optimal placements of collocated sensors/actuators. Numerical 
simulations have been done for determination of optimal placements of collocated PZT 
sensors and actuators in smart fiber reinforced shell structures using island model parallel GA 
(IMPGA) in conjunction with electro-mechanical finite element analysis with an objective of 
maximizing the controllability index. It has been observed that the present IMPGA based 
formulation not only makes it possible to determine optimal sensors/actuators locations for 
large structures but also leads to a better solution at a much reduced and achievable 
computational time.  

Keywords: Optimal placement, Sensors/Actuators, Island Model Parallel Genetic Algorithms, 

Smart Structures. 

Introduction 

Optimal placement of sensors and actuators plays an important role in deciding the efficacy of 
smart structures in suppressing undesirable disturbances. For active vibration control of large 
structures requiring a large number of sensors/actuators a very large number of possibilities 
exist from which the optimal locations of the sensors/actuators need to be chosen to achieve 
the maximum actuation. Therefore, determination of optimal placements of sensors and 
actuators has been an important area of research and a number of works have already been 
reported. Some of the important works are described here.  Kang et al [1] has worked on 
optimal placement of piezoelectric sensor/actuator for active vibration control of laminated 
beams. Kim and Kim [2] presented optimal distribution of an active damping layer consuming 
minimum control energy on a flexible plate. Since optimal placement of sensors and actuators 
is a discrete optimization problem, genetic algorithm (GA) ideally suits as an optimization 
tool for this kind of problems. Rao et al [3] used GAs to obtain the optimal actuators 
placement in an actively controlled two-bay truss.  Dhuri and Seshu [4] used GA for active 
vibration control of flexible structure. Roy and Chakraborty [5] presented an improved GA 
for optimal vibration control of smart fiber reinforced polymer (FRP) composite structure. 
Multi-objective optimization of hybrid composite laminates using serial genetic algorithm 
(SGA) and finite element method (FEM) has also been reported by Rahul et al. [6].  Agarwal 
et al [7] proposed a gene manipulation, multi-objective genetic algorithm to optimize the 
placement of active devices and sensors in frame structures. Roy and Chakraborty [8] used 
GA based linear-quadratic regulator (LQR) control scheme for designing an optimal 
controller to maximize the closed loop.  
 
It has already been reported that GA based placements leads to superior results compared to 
commonly used mode shape based placement [5]. However necessary requirements of large 
population size and a large number of generations for convergence to the optimal solution put 
constraints on computational time and storage. Moreover, for structural applications, the 
fitness is calculated using FEM whose accuracy is again decided by spatial and time 



discretizations. This is more important for large structures where the number of combinations 
to be searched for converging to the optimal solution is very large. Therefore, IMPGA could 
be advantageously used to search optimal sensors/actuators placements in such smart 
structures. Even though there are few works [9] where IMPGA has been used for design of 
optimal stacking sequence of composite structures, to the best of author’s knowledge, no 
work has been reported in literature to obtain optimal sensors and actuators placement using 
IMPGA.  Therefore the present paper aims at developing an island model parallel GA based 
methodology to search for optimal placements of collocated sensors and actuators leading to a 
better solution compared to SGA and at a reduced and achievable computational time.  

Problem Formulation 

Figure 1 shows the schematics of a smart laminated 

structure having patches of piezoelectric material 

bonded on the top and bottom surfaces of the base 

structure, one as sensor and the other as actuator. 

Signal from the sensor is used as a feedback in a 

closed–loop feedback control system. An appropriate 

control law determines the feedback signal to be given 

to the actuator. In Fig. 1, tF is the excited force,  sφ  is 

the voltage generated by the sensor and  aφ  is the 

voltage input to the actuator in order to control the 

displacement. 

 

Finite Element Formulation for Controllability Index 

 

An eight noded isoparametric shell elements have been used for finite element 

electromechanical analysis of the smart FRP shells [10]. The direct and converse piezoelectric 

equations are given by equations (1) and (2) respectively as 
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where, { }D  denotes the electric displacement vector, { }σ  denotes the stress vector, { }ε  

denotes the strain vector and { }E  denotes the electric field vector. Further[ ] [ ][ ]e = d C , where 

[ ]e  comprises the piezoelectric coupling constants, [ ]d  denotes the piezoelectric constant 

matrix and [ ]∈∈∈∈  denotes the dielectric constant matrix. Electrical potential has been assumed to 

only vary in the thickness direction linearly and the electric field strengths of an element in 

terms of the electrical potential for the actuators and the sensors patches respectively are 

expressed as 
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where subscripts a and s refer to the actuator patch and the sensor patch respectively. e

a
  B  

and   
e

sB  are the electric field gradient matrices of the actuator  and the sensor elements 

respectively. The dynamic finite element equations of a piezo-laminated composite shell can 

be derived from the Hamilton principle and for one-element it is 

Figure 1. Smart structure 
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where e  uuM  is the global mass matrix, e

uu
  K  is the global elastic stiffness matrix,   

e

uaK  

and e  usK  are the global piezoelectric coupling matrices of actuator and sensor patches 

respectively. [ ]aaK  and e  ssK are  the global dielectric stiffness matrices of actuator and 

sensor patches respectively. { }d is displacement vector, { }eF  is the element external 

mechanical force vector and  { }eG  is the element external electrical force vector. After 

assembling the overall dynamic finite element equation is 
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The decoupled dynamic equations considering modal damping can be written as 

( ) { } ( ){ } [ ] { } [ ] [ ]{ }
.. .

22 ( )
T T

i di i i i i ua a
t t tξ ω ω

 
+ + = − 

 
η η η ψ F ψ K φφφφ                  (6) 

where iω the i
th

 natural frequency andξdi
 is the damping ratio, [ ]...1 2 r[ψ] = ψ ψ ψ  is the truncated 

modal matrix  which transforms the generalized coordinates ( )d t to the modal 

coordinates ( )η t  as
 

t t={d( )} [ψ]{η( )} . In state-space form  
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where [ ]0C  depends on the modal matrix [ ]ψ and the sensor coupling matrix [ ]usK . The 

modal control force 
cf  applied to the system can be written as 
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It follows from Eq. (9) that  
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Using the singular value analysis, [ ] [ ][ ][ ]
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S   where 
an is the number of actuator. Eq. (10) can be rewritten as 
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Thus, maximizing this norm independently on the input voltage { }aφφφφ induces maximizing
2

S . 

The magnitude of 
iσ  is a function of location and the size of piezoelectric actuators. Wang 

and Wang [11] proposed maximizing the controllability index as 
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Island Model Parallel Genetic Algorithm for Optimum Sensor/Actuator  

In the present problem, the design variables are the positions of the actuators, and are 

represented in a string of integers specifying the locations 

of actuators. Referring to Eq. (12), the higher the 

controllability index, the smaller will be the electrical 

potential required for control. In modal control, however, 

one of the important issues is to decide the number of 

control modes where actuations need to be done. 

Providing actuations to higher modes (which are residual 

modes actually not excited) might lead to instability 

known as control spill over.  In the present work therefore 

the fitness/objective function which needs to be 

maximized in the GA ensuring optimal actuators locations 

has been proposed as follows     
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where R

i
σ  are the components of [ ]RS corresponding to residual modes and  γ ′  is a weight 

constant. In this objective function, if the contribution of residual modes dominates, fitness of 

that population is forced to a very low value thereby eliminating the chances of such 

populations to grow in successive generations.         

In IMPGA approach (Fig.2), first the population size is decided as a multiple of number of 

processors so that the total population of chromosomes is divided into a number of sub-

 
Figure 2. A 5 processor IMPGA 



populations. String length of each population is decided by the number of actuators. For 

example referring to Fig. 3 if the population size is 60 and there are 5 processors (islands), 

each processor will handle a sub population size of 12. In each of the processor, for sub 

populations, the fitness value for each chromosome is obtained using the FEA independently 

and new sets of chromosomes are generated by applying genetic operators after each 

generation. After a certain number of generations, the best population of one processor is 

allowed to migrate only to its neighboring processor, replacing the worst population. For 

example, the best candidate from processor 1 will replace the worst candidate of processor 2, 

the best candidate of processor 2 will replace the worst candidate of processor 3 and so on. 

Thus, migration does not change the size of population. At the end of each generation, a better 

population results, and is used in successive generations to achieve populations with even 

better fitness. This is repeated until the solution converges and the optimal locations of 

actuators are selected corresponding to the chromosome with best controllability index. 

Results and Discussions  

A parallel code has been developed using MPI libraries as 

well as migration routines (Island Model) for optimization. 

The parallel code has been run on parallel cluster at IIT 

Guwahati. The cluster has 5 nodes and each node consists of 8 

(1.5 GHz) processors. On one of the nodes of the cluster, the 

code has been run using SGA corresponding to same genetic 

parameters and population. The results obtained from IMPGA 

as well as SGA model for optimal placement of sensors and 

actuators have been compared to study the efficacy of the 

present approach.    

                                                   

Problem Definition  

 

In this study, a [p/[0/90]s/p] graphite/epoxy (GR/E) doubly curved shell with the four edges 

simply supported, having a=b=0.02m, R1=2R2=R=0.06m R/a =3, a/h=10 (Fig. 3) has been 

considered.  Here ‘p’ stands for piezo-patches one for sensing and the other for actuation. 

Thickness of each piezoelectric patch has been considered as 0.5 mm and that of each GR/E 

lamina has been considered as 0.25 mm. A 10×10 finite element mesh has been used to model 

the shell panel and optimal actuators placements have been calculated considering the first 

eight modes with first four modes as control modes and others as residual modes. The 

material properties have been listed in the Table 1.    
                  

 

                 

 

 

 

 

 

 

 

 

 

 

Table 2. Input parameters for GA 

Initial population  60 

Maximum generation 100 

Number of actuators/sensors 6 

Mutation rate 20% 

Crossover rate 90% 

 

Table 1.  Material properties 

Property Gr/E PZT 

E1 (GPa) 172.5 63.0 

E2=E3 (GPa) 6.9 63.0 

G12=G13  (GPa) 3.45 24.6 

G23 (GPa) 1.38 24.6 

υ12=υ13=υ23 0.25 0.28 

ρ  (kg m
-3

) 1600 7600 

e31=e32 (C m
-2

) 0.0 10.62 

∈11=∈22=∈33 (F m
-1

) 0.0 0.15 x10
-7 

 

Figure 3. Curved shell 



Table 2 shows various input parameters considered for SGA as well as IMPGA. The stated 

genetic parameters used in IMPGA are finalized from the values obtained from multiple runs 

in the SGA. Thus, an optimized value of 100 generation with an initial population 60 is used 

to obtain comparative results regarding fitness and time between IMPGA and SGA. Six 

numbers of actuators are considered leading to a string length of 6. 

 

         
 

 

 

 

Effect of Population Size on Controllability Index and CPU time 

 

The code has been run up to 100 generations in one processor as SGA with increasing 

population size and table 3 shows the effect of population size on the controllability index. It 

is clear from the table that as the population size increases, controllability index increases but 

as expected the computational time also increases. It is therefore necessary that the optimal 

placement of sensors and actuators are searched from a larger population. However 

computational time requirement puts a restriction on the upper limit of the population size 

when such a problem is run on a serial platform. Therefore a parallel GA provides a feasible 

solution for such problems and island model GA being inherently parallel has been 

advantageously used in the present study. 

 

Optimal Placement using Island Model Parallel GA 

 

Five different schemes were used to study the effect of parallelization. The schemes are 

decided based on two factors viz. a maximum population size which could be run in a serial 

GA and with different number of processors such that in each case the number of processors 

is an integer factor of the population size. Different schemes considered here are: 

 

• Scheme 1:-   SGA with one processor having population size of 60.  

• Scheme 2:-   IMPGA with 6 processors having a sub population size of 10 in each  

• Scheme 3:-   IMPGA with 10 processors having a sub population size of 6 in each  

• Scheme 4:-   IMPGA with 12 processors having a sub population size of 5 in each  

• Scheme 5:-   IMPGA with 15 processors having a sub population size of 4 in each 

 

Table 4 shows the comparative performances of these 5 schemes up to 100 generations. It 

could be observed that increasing number of processors leads to increase in fitness up to 12 

processors but beyond that the fitness decreases. This indicates that for this particular 

problem, the maximum number of processors that could be used for a population of 60 is 12. 

This is due to the fact that depending upon the number of populations increasing the number 

of processors leads to smaller sub population size in each processor and more communication 

Figure 4. Convergence of fitness 

Table 3. Controllability index for SGA 

Initial 

population 

Maximum 

generation 
Fitness 

Time  

(sec) 

5 100 0.237  210993 

30 100 0.248  1264376 

60 100 0.255    2526150 

 



overheads. Thus the minimum population size for this problem is 5. Figure 4 shows the 

convergence of fitness for the optimal placement problem of smart shell structure for these 5 

schemes. It is clear that with the increasing number of processors, it is not only that the fitness 

is higher compared to that in SGA but this fitness is achieved at a much less number of 

generations. This is due to the fact that the better solutions evolve independently in different 

processors and those processors (islands) interact (migration) after certain number of 

generations thereby passing on populations with better fitness only in each processor. 

Therefore even though the population size is larger, increasing number of processors still 

reduces the number of generation required for convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison Serial GA and IMPGA 

 

Figure 5 shows the variation of computational time with the increasing number of processors 

  

while using IMPGA. Here, the use of one processor implies SGA executed using a single 

processor on the parallel platform. It could be observed from Fig. 5 that for a fixed number of 

initial population and generation, increase in number of processors leads to significant 

decrease in computational time. In the present problem of optimal placement of collocated 

actuators/ sensors using IMPGA with 12 numbers of processors takes 2,27,651 seconds while 

SGA takes 25,26,150 seconds under the same condition. The better computational 

performance of IMPGA is only because of better mixing of population due to migration 

which leads to faster convergence to optimal solution. The performance of a parallel code is 

 

Table 4.  Controllability index for different schemes 

Scheme Initial 

population 

Maximum 

generation 

Number of 

processor 
Fitness 

Time 

(Sec) 

1 60 100 1 0.255 2526150 

2 60 100 6 0.256 443612 

3 60 100 10 0.258 270812 

4 60 100 12 0.260 227651 

5 60 100 15 0.252 183234 

 

                 
Figure 5. Time Vs no. of processors         Figure 6. Speedup Vs no. of processors 
 



evaluated in terms of factors such as speedup, efficiency and scalability. The 

speedup, /
N S par

S T T= where, ST  and  
par

T  represent time taken with a single processor 

multiple processors respectively. The efficiency of a parallel algorithm, /N NE S N= where N 

is the number of processors. In the present study, a comparison has been made between SGA 

and IMPGA based on these factors. Table 5 shows the speed up obtained with increasing 

number of processors for a fixed population size of 60 up to 100 generations. Figure 6 shows 

the speedup comparison between SGA and IMPGA. It could be observed that with the 

increase in number of processors, speedup increases effectively. This is also clearly observed 

that there is a decrease in efficiency with the increase in processors (Fig.7). This is due to the 

fact that in the IMPGA, overhead increases due to increase in migration as the number of 

processors increases.  

 

Further, to understand the behavior of the present IMPGA application, with increasing 

number of population, scalability analysis has been carried out keeping the number of 

processors fixed and the same is compared with SGA. In the present study, computational 

time has been noted for 100 generations for SGA and 15 processors IMPGA. Figure 8 shows 

the CPU time versus population size for both the cases. It could be clearly observed that in the  

case of SGA the magnification in CPU time is equal to the magnification in population size. 

However, in the case of 15 processors IMPGA, increase in CPU time is much less compared 

to the magnification in population size. This shows that the proposed IMPGA based model in 

determination of optimal sensors/actuators location will be more efficient for larger 

population size and hence for larger structures. 

 

 

Table 5: Speedup and efficiency for 100 generation with fixed population size of 60 

No. of 

Processors  

Time  

(Sec) 

Speedup 

Actual 

Speedup 

Theoretical 

Efficiency  

Actual 

Efficiency  

Theoretical 

1(Serial)   2526150 1 1 -- -- 

6 443612 5.69 6 94.9% 100% 

10 270812 9.32 10 93.2% 100% 

12 227651 11.09 12 92.5% 100% 

15 183234 13.78 20 91.9% 100% 

 

                          
Figure 8 Time Vs no of  processors            Figure 7. Efficiency Vs no of  processors 
 



Conclusions 

In the present work an island model parallel genetic algorithm in conjunction with FEA has 

been developed for evaluation of optimal placements of collocated actuators/ sensors on a 

smart FRP shell structure. Controllability index determined from finite element analysis has 

been used as the measure of fitness with the actuators location as the variables. The present 

method not only leads to a better solution, but also finds that at a much reduced computational 

time. This method will be especially suitable for large structures where large number of 

sensor and actuators need to be used requiring larger population size and sequential GA fails 

due to limitation in population size. It has been observed from the present study that the 

present IMPGA based method is far superior compared to the sequential GA method in 

determining the optimal placements of actuators/sensors.  
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