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Abstract 

In this work, we present a computational approach to high cycle fatigue life prediction with 

an efficient solver employing time-discontinuous Galerkin (TDG) based space-time finite 

element method and its enriched version (XTFEM) [1, 2] in three dimensions. While the 

robustness of TDG based space-time FEM has been extensively demonstrated, a critical 

barrier for the extensive application is the large computational effort due to the additional 

temporal dimension and enrichment that are introduced. By formulating a new preconditioner 

and utilizing the properties of Kronecker product, we developed a generic iterative algorithm 

for solving the fully-coupled block-structured matrix equations formulated by space-time 

FEM. This approach reduces the computational cost to the same order of solving the 

corresponding static FE problems. The established numerical framework is further integrated 

with a multiscale damage model for the purpose of capturing failure initiation and 

propagation. The efficiency and robustness of the proposed method are illustrated in 

numerical examples, in which we show much better performance over direct solution of the 

original TDG matrix equations using either sparse direct or iterative solvers 

Keywords: Space-Time FEM, XTFEM, Parallel Computing, GPU, Fatigue 

Introduction 

Past studies have shown that space-time finite element based on the time-discontinuous 

Galerkin (TDG) formulation leads to A-stable, higher-order accurate ODE solvers [3-5]. The 

TDG-based method has been extended to second-order hyperbolic systems such as 

elastodynamics [6-9]. It significantly reduces the artificial oscillations that are commonly 

associated with semi-discrete time integration schemes in capturing sharp gradients. 

Recently, it has been shown that its predicative capabilities in the temporal domain can be 

further improved by enriching the standard shape functions with a function that represents the 

problem physics, such as multi-temporal scale fatigue life prediction problems [2, 10] or 

coupled atomistic/continuum multiscale problems [1, 11, 12]. The enriched method is termed 

the extended space-time FEM (XTFEM). However, due to the additional temporal dimension 

and enrichment that are introduced, space-time FEM and XTFEM lead to systems of coupled 

equation larger than those emanating from regular semi-discrete methods, which becomes a 

critical barrier for practical applications in terms of computational cost. 

By casting the coupled equations to partly decoupled forms, iterative predictor/multi-

corrector algorithms have been developed in past decades [9, 13, 14]. These methods have 

been proved to be unconditionally stable and widely employed for TDG-based two-field 

formulation, as the resulting matrix equations are only weakly coupled. However, the single-

field formulation employed in current implementation leads to fully coupled matrix systems, 

thus the algorithms developed for the two-field formulation are not directly applicable. 

Previously, we proposed a generalized iterative solution approach for both space-time FEM 



and XTFEM in two dimensions [10], which significantly reduced the computational effort. In 

current work, we further extend this approach to three dimensions by developing a new 

preconditioning technique. Unlike the iterative predictor/multi-corrector algorithms, the new 

approach reduces the computational cost to the same order of solving the corresponding static 

finite element equations without explicitly recasting the original block-structured matrix 

systems. Furthermore, parallel algorithms based on multi-core graphics processing unit 

(GPU) are established in order to accelerate the solution of nonlinear constitutive model 

employed in fatigue damage problems. Finally, numerical examples are given to demonstrate 

the efficiency and robustness of the proposed method. 

Space-Time Finite Element Method 

Regular Space-Time FEM 

The regular space-time FEM in current work follows largely the single-field formulation of 

TDG for elastodynamics [7]. In TDG formulation, the space-time domain  ]0, T[ is first 

divided into multiple segments called space-time slabs and the n-th slab given as Qn =  

]tn-1, tn[, then Qn is further discretized into ( )
el n

n  space-time elements. We further introduce 

the jump operators 
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uh(x, t) to be C0 continuous within each slab, the weak form of TDG formulation can be 

expressed as, 
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for n = 1, 2, …, N, where  is the mass density,  is the stress, f is the body force and t is the 

prescribed traction on boundary t. Note that the first line of Eq. (2) represents the regular 

weak form of linear elastodynamics in Galerkin formulation, while the second line enforces 

the velocity and displacement continuity in time.  

In current work, a multiplicative form of the space-time shape function is adopted as 
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where Nx and Nt are the spatial and temporal shape functions respectively. This form allows 

us to discretize the spatial and temporal domain independently. Shape functions from the 

regular finite element can be employed for Nx. For temporal shape function, a simple 3-node 

quadratic interpolation scheme has been employed. Three nodes at tn-1, tn-1/2 and tn are equally 

spaced along the time axis for each space-time slab and  
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in which t  is the time step.  



After substituting the space-time approximation into the weak form, we arrive at the space-

time stiffness equation in the form of Kd = F, in which the fully-coupled, block-structured 

linear system matrix is given as 
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where K and M are regular spatial stiffness and mass matrix respectively. 

Extended Space-Time FEM 

The predicative capability of the space-time FEM can be further improved by introducing an 

enrichment function (x, t) into regular space-time shape function. Choice of such an 

enrichment function depends on the problem physics. The enriched space-time approximation 

is given as 

 
1 1

( , ) ( , ) ( , )
s en n

I I J J

I J

t t t
 

  u x N x d N x a   (6) 

where a represents the enriched degrees of freedom (DOFs), ns and ne are the numbers of 

standard and enriched DOFs respectively. There resulting formulation is then termed as 

XTFEM. For the J-th node the enriched shape function is 
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t t t  x x x . 

Enrichment function adopted in current work has been proposed for high cycle fatigue 

problems [2, 10] and coupled atomistic/continuum simulations [1, 11, 12]. By employing a 

time dependent harmonic function, the enrichment function is given as 
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Similarly, the linear system matrix of XTFEM is obtained as 
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where K is the regular space-time system matrix, Kea and Keb reflect the coupling between 

enriched and regular DOFs, Kee reflects the coupling between enriched DOFs. 

An Efficient Iterative Solver 

Mathematical Formulation 

As shown in Eqs. (5) and (9), linear system matrices formulated by either regular space-time 

FEM or XTFEM are block-structured and coupled with both conventional FE stiffness matrix 

K and mass matrix M, which can be expressed as 
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where A and B are non-symmetric coefficient matrices obtained by temporal integration, 

symbol   denotes the Kronecker product. The size of matrices A (or B) and K (or M) are 

denoted by r and s respectively. The value of r is determined by both the order of temporal 

shape function and the number of enriched DOFs that are introduced to each node, it could be 

neglected when compared with the value of s for practical problems. For example, the 

temporal coefficient matrices formulated by regular space-time FEM in Eq. (5) are given as 
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where r = 3 in this case. 

The proposed linear system solver is based on preconditioned iterative methods. By 

employing the preconditioning techniques, the original linear equation of Kd = F is 

converted to 
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in which P is the preconditioner, d and F are unknown and force vectors respectively.  

It is well known that the efficiency and robustness of these methods largely depends on the 

quality of the preconditioners. A good preconditioner P should be close to K, and makes the 

resulting system easier to solve. In order to improve the numerical efficiency of the iterative 

solver, we further exploit and utilize the unique block-structure of the K matrix as shown in 

Eq. (10) to propose a new preconditioner. The new preconditioner is obtained as  A PP , 

where P K  is a preconditioning matrix obtained by approximating the spatial stiffness 

matrix K. The resulting computational effort is then reduced to the same order of solving the 

corresponding static finite element stiffness equations. 

Numerical implementation 

In current work, the Generalized Minimum Residual method (GMRES) [15] is employed as 

the iterative solver since the system matrix K is nonsymmetric. Preconditioning matrix P = 

LU in which L and U matrices are obtained by incomplete lower and upper factorization of 

the spatial K matrix with threshold strategy for dropping small terms and column pivoting 

(ILUTP) [15]. In order to reduce the number of fill-in entries that are introduced to the factor 

matrices during the factorization, which could lead to very expensive computation, a 

permutation of the K matrix is performed first by employing the Reversed Cuthill-McKee 

(RCM) reordering algorithm [16]. To overcome the demanding storage efforts, K and M 

matrices are stored in Compressed Sparse Row (CSR) format. Note that explicit formulation 

of the block-structured matrix K is no longer required in current implementation. 

Numerical Example 

Prismatic rod subject to cyclic fatigue loading 

We consider a prismatic rod as sketched in Figure 1. The rod is fixed at left end and subject 

to a fully-reversed cyclic fatigue loading p(t) = P0sin(2ft)H(t) Pa at right end, where H(t) is 

the Heaviside function. The amplitude and frequency of the cyclic loading are 106 Pa and 10 

Hz respectively. The material properties are given as Young’s modulus E = 211 GPa, 

Poisson’s ratio  = 0.3 and mass density  = 7850 kg/m3.  
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Figure 1. Illustration of the prismatic rod problem 

This problem is simulated by XTFEM with a time step 5t T   where T = 0.1 s is the period 

of loading cycle. The spatial domain is discretized by 8-node linear cubic elements. The 

computing environment is a desktop workstation with Intel Xeon CPU E5-2623v3, 16 

Gigabytes RAM and NVIDIA TESLA GPU K20c. Displacement response is illustrated in 

Figure 1 and compared with solutions obtained from both explicit and implicit FEM using 

ABAQUS. The result obtained by XTFEM agrees well with those from traditional semi-

discrete methods which require much smaller time steps. It shows that XTFEM is stable and 

accurate for the large time steps employed. This advantage of XTFEM would allow fast 

simulations on high-cycle fatigue loading histories. 

 
Figure 2. Displacement response at the free end of the rod subject to cyclic fatigue 

loading 

In order to demonstrate the performance of the proposed iterative solver, a comparison study 

with regarding to both a sparse direct solver (SuiteSparse/UMFPACK) and a regular 

preconditioned iterative solver is conducted here. Note that the regular preconditioned 

iterative solver employed here is almost the same with the one developed in current work, 

except that the preconditioner is obtained directly from the large, block-structured space-time 

stiffness matrix. For these two iterative solvers, the dropping and pivoting tolerances of 

ILUTP preconditioner are set to 1.0e-3 and 1.0e-1 respectively, while the GMRES 

convergence tolerance is 1.0e-8. 

By varying the size of spatial elements, N, the number of unknowns in the resulting linear 

systems formulated by XTFEM, ranges from 5,850 to 3,661,218. The computational 

performances of different solvers on those linear systems are summarized in Table 1. The 

memory usage is obtained from the storage of the L U factors due to their major contribution, 



while time cost is measured by the CPU time for solving the first time step as the LU 

factorization is only performed at this step. In addition, the number of iterations to converge 

of the two iterative solvers also provided in Table 1. Symbol “/” indicates no results due to 

insufficient memory.  

Table 1. Performance of different solvers in XTFEM simulations 

DOFs 

Sparse direct solver Regular iterative solver Current solver 

Mem 

(MB) 

Time 

(s) 

Mem 

(MB) 

Time 

(s) 
Iters 

Mem 

(MB) 

Time 

(s) 
Iters 

5,850 224 12.5 21.7 4.4 76 1.6 0.04 13 

36,450 7,764 3,254 300.5 160 290 20 1.0 47 

484,218 / / 4,865 8,432 1,332 333 41 151 

3,661,218 / / / / / 2,722 680 309 

 

Table 1 clearly demonstrates the advantages of the current solver over the other two and 

remarkable computational savings are achieved. In terms of computational complexity, the 

sparse direct solver showed an O(N3.0) time cost and O(N1.9) memory cost; The regular 

iterative solver achieved an better performance of O(N1.7) and O(N1.2) for time and memory 

costs respectively; Finally, the current solver further reduced the time cost to O(N1.5) and 

memory cost to O(N). In addition, the proposed solver also significantly reduced the number 

of iterations to converge. Thus, we conclude here that the proposed iterative solver efficiently 

and robustly accelerated the solution of linear systems formulated by XTFEM. 

Conclusion 

In summary, an accelerated multi-temporal scale approach is developed in current work for 

fatigue failure prediction in three dimensions. An efficient iterative solver with a new 

preconditioning technique is established for the fully-coupled, block-structured matrix 

equations that are formulated by TDG-based space-time FEM and XTFEM. This solver 

successfully reduces the computational cost from solving the large space-time matrix 

equations to the same order of solving the smaller corresponding static finite element 

equations without explicit matrix recasting. GPU-based parallel algorithms for the nonlinear 

constitutive fatigue damage model is coupled with XTFEM to predict fatigue failure. 

Numerical examples with unknowns up to ~3.7 million have been efficiently accelerated by 

the proposed method using single CPU process on a desktop workstation. The robustness of 

the solver is also extensively demonstrated. It shows that the computing time and memory of 

the accelerated implementation scale with the number of DOFs N through O(N1.5) and  O(N) 

respectively. 
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