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ABSTRACT

In several problems of portfolio selection the reward-risk ratio criterion is optimized to search for a risky portfolio offering
the maximum increase of the mean return, compared to the risk-free investment opportunities. In the classical model,
following Markowitz, the risk is measured by the variance thus representing the Sharpe ratio optimization and leading to
the quadratic optimization problems. Several polyhedral risk measures, being Linear Programming (LP) computable in
the case of discrete random variables represented by their realizations under specified scenarios, have been introduced and
aplied in portfolio optimization. The reward-risk ratio optimization with polyhedral risk meausures can be transformed
into LP formulations. The LP models typically contain the number of constraints (matrix rows) proportional to the number
of scenarios while the number of variables (matrix columns) proportional to the total of the number of scenarios and
the number of instruments. They can effectively be solved with general purpose LP solvers provided that the number
of scenarios is limited. However, real-life financial decisions are usually based on more advanced simulation models
employed for scenario generation where one may get several thousands scenarios. This may lead to the LP models with
huge number of variables and constraints thus decreasing their computational efficiency and making them hardly solvable
by general LP tools. We show that the computational efficiency can be then dramatically improved by alternative models
based on the inverse ratio minimization and taking advantages of the LP duality. In the introduced models the number of
structural constraints (matrix rows) is proportional to the number of instruments thus not affecting seriously the simplex
method efficiency by the number of scenarios and therefore guaranteeing easy solvability.
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Linear programming models for reward-risk ratio optimization

Portfolio selection problems are usually tackled with the mean-risk models that characterize the uncertain returns by
two scalar characteristics: the mean, which is the expected return, and the risk - a scalar measure of the variability of
returns. In the original Markowitz model [8] the risk is measured by the standard deviation or variance. Several other
risk measures have been later considered thus creating the entire family of mean-risk (Markowitz-type) models. While
the original Markowitz model forms a quadratic programming problem, many attempts have been made to linearize the
portfolio optimization procedure (c.f., [7] and references therein). The LP solvability is very important for applications
to real-life financial decisions where the constructed portfolios have to meet numerous side constraints (including the
minimum transaction lots, transaction costs and mutual funds characteristics) [6]. A risk measure can be LP computable
in the case of discrete random variables, i.e., in the case of returns defined by their realizations under specified scenarios.
Several such polyhedral risk measures have been applied to portfolio optimization [7]. Typical risk measures are deviation
type. The simplest LP computable risk measures are dispersion measures similar to the variance. Konno and Yamazaki
[4] introduced the portfolio selection model with the mean absolute deviation (MAD). Young [18] presented the Minimax
model while earlier Yitzhaki [17] introduced the mean-risk model using Gini’s mean (absolute) difference as the risk
measure. The Gini’s mean difference turns out to be a special aggregation technique of the multiple criteria LP model [9]
based on the pointwise comparison of the absolute Lorenz curves. The latter makes the quantile shortfall risk measures
directly related to the dual theory of choice under risk [15]. Recently, the second order quantile risk measures have been
introduced in different ways by many authors [1][16]. The measure, usually called the Conditional Value at Risk (CVaR)
or Tail VaR, represents the mean shortfall at a specified confidence level. The CVaR measures maximization is consistent
with the second degree stochastic dominance [11]. The LP computable portfolio optimization models are capable to deal
with non-symmetric distributions. Some of them, like the mean absolute semideviation (MAD model) can be combined
with the mean itself into optimization criteria (safety or underachievement measures) that remain in harmony with the



Second order Stochastic Dominance (SSD). Some, like the conditional value at risk (CVaR) [16] having a great impact
on new developments in portfolio optimization, may be interpreted as such a combined functional while allowing to
distinguish the corresponding deviation type risk measure.

Having given the risk-free rate of return r0, a risky portfolio x may be sought that maximizes ratio between the increase
of the mean return µ(x) relative to r0 and the corresponding increase of the risk measure %(x), compared to the risk-
free investment opportunities. Namely, a performance measure of the reward-risk ratio is defined (µ(x) − r0)/%(x) to be
maximized. The optimal solution of the corresponding problem is usually called the tangency portfolio as it corresponds
to the tangency point of the so-called capital market line drawn from the intercept r0 and passing tangent to the risk/return
frontier. For the LP computable risk measures the reward-risk ratio optimization problem can be converted into an LP form
[5]. The reward-risk ratio is well defined for the deviation type risk measures. Therefore while dealing with the CVaR or
Minimax risk model we must replace this performance measure (coherent risk measure) C(x) with its complementary
deviation representation µ(x) − C(x) [3][5]. The reward-risk ratio optimization with polyhedral risk meausures can be
transformed into LP formulations. Such an LP model, for instance for the CVaR risk measure, contains then T auxiliary
variables as well as T corresponding linear inequalities. Actually, the number of structural constraints in the LP model
(matrix rows) is proportional to the number of scenarios T , while the number of variables (matrix columns) is proportional
to the total of the number of scenarios and the number of instruments T +n. Hence, its dimensionality is proportional to the
number of scenarios T . It does not cause any computational difficulties for a few hundreds scenarios as in computational
analysis based on historical data. However, real-life financial analysis must be usually based on more advanced simulation
models employed for scenario generation [2]. One may get then several thousands scenarios [14] thus leading to the LP
model with huge number of auxiliary variables and constraints and thereby hardly solvable by general LP tools. Similar
difficulty for the standard minimum risk portfolio selection have been effectively resolved by taking advantages of the LP
duality to reduce the number of structural constraints to the number of instruments [12][13]. For the linearized reward-risk
ratio models such an approach does not work. Although, for the CVaR risk measure we have shown [10] that while taking
advantages of possible inverse formulation of the reward-risk ratio optimization as ratio %(x)/(µ(x) − r0) to be minimized
and the LP dual of th elinearized problem one can get the number of constraints limited to the number of instruments.

In this paper we analyze efficient optimization of reward-risk ratio for various LP computable risk measures. Taking
advantages of possible inverse formulation of the reward-risk ratio optimization as ratio %(x)/(µ(x) − r0) to be minimized,
we show that (under natural assumptions) this ratio optimization is consistent with the SSD rules, despite that the ratio
does not represent a coherent risk measure [1]. Further, while transforming this ratio optimization to an LP model, we
take advantages of the LP duality to get a model formulation providing higher computational efficiency. For the MAD
and Minimax measures the number of structural constraints in the introduced model is proportional to the number of
instruments n while only the number of variables is proportional to the number of scenarios T thus not affecting so
seriously the simplex method efficiency. Therefore, the model can effectively be solved with general LP solvers even for
very large numbers of scenarios. Indeed, the computation time for the case of fifty thousand scenarios and one hundred
instruments is then below a minute. The reformulation can also be applied to more complex quantile risk measures. The
Tail Gini’s measures or the Weighted CVaR measures defined as combinations of CVaR measures for m tolerance levels
lead originally to LP models with the number of structural constraints (matrix rows) proportional to the respectively
multiplied number of scenarios mT . In the alternative model taking advantages of the LP duality the number of structural
constraints is proportional to the total of the number of instruments and number of tolerance levels n + m. This guarantees
a high computational efficiency of the dual model even for a very large number of scenarios. The standard LP models
for the Gini’s mean difference require T 2 auxiliary constraints which makes them hard already for medium numbers of
scenarios, like a few hundred scenarios given by historical data. The models taking advantages of the LP duality allow
one to limit the number of structural constraints making it proportional to the number of scenarios T thus increasing
dramatically computational performances for medium numbers of scenarios although still remaining hard for very large
numbers of scenarios.
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