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Abstract

This paper presents the development of a cellular automaton (CA) which could take into ac-
count the neighborhood effect in the context of polycrystal mechanics. This model aims to have
a better estimate of the stress / strain field in polycrystals than conventional analytical models
such as the self-consistent model (SCM). As the first step in the consideration of neighborhood
effect, the model was developed in the case of a uniaxial loading in linear elasticity. A Kelvin
structure is used to represent a polycrystal, considering that all grains have the same size and
shape. The primary focus is the influence of crystallographic orientations on the local behavior
in the microstructure. The model has been developed based on the hypothesis that the Finite
Element Method (FEM) can quantify correctly the influence of a grain’s neighborhood on its
behavior. FEM, SCM, and the analytical model results are finally compared grain by grain after
simulations on 686 grains polycrystalline aggregates in the Kelvin structure. The results show
that the developed CA provides an approximation almost three times better than those of the
SCM and the importance of taking into account the neighborhood effect. This also gives an
opportunity to better understand the parameters that influence the behavior of a grain in a poly-
cristal.

Keywords: Cellular automaton, Homogenization Model, Anisotropy, Eshelby’s inclusion, Poly-
crystal, Neighborhood.

Introduction

The Finite Element Method (FEM) is the most common method used to simulate the microme-
chanical behavior of polycrystals [1, 2]. It requires a heavy amount of computer resources and
the analytic model such as the Self-Consistent Model (SCM) [3] can offer a good approximation
of the micromechanical behavior of polycrystals for a much lower calculation time, allowing
for the possibility to simulate various microstructure configurations. However, the SCM does
not take into account the neighborhood effect as each phase is defined solely by its crystal
orientation and volume fraction, and there is no spatial representation of the polycrystal.

This is quite unfortunate as the neighborhood effect is an important criterion to consider if one
wants to describe the behavior of the material on a local scale [4]: a grain surrounded by soft
grains will not show the same behavior as the same grain surrounded by hard grains. In order
to take this into account, the principles of the cellular automaton model have been considered
by several authors to address this limitation [5, 6, 7]

A cellular automaton (CA) is a discrete mathematical model where the structure is discretized
into several cells. Each cell has a characteristic initial state that characterizes it, and its behavior



Table 1: Elastic constants of the cubic iron crystal ([11])

Fe C1111 = 226 GPa C1122 = 140 GPa C1212 = 116 GPa

depends on the behavior of its neighboring cells. This is described by a transition rule. Such
CA can describe and predict complex behaviors in many different fields of research [8, 9, 10].

Figure 1: Kevin Structure

In this context, the objective of this research is to develop
a simple model based on the SCM by adding the principles
of CA in order to take into account the neighborhood ef-
fect. As a first step, the structure of Kelvin (Fig.1) has been
used to annihilate the effects of grain shape and size ratio,
and to document only the effect of grain orientation of the
neighboring grains. Non cristallographic texture was intro-
duced in the microstructure. They were tested in uniaxial
loading with linear elasticity properties. In order to have a
better understanding of the influence of the neighborhood
of a grain, a full-field numerical study has been proceeded
using the FEM. From the hypotheses that FEM simulation
gives ”the right” results, a model has been developed and its
results have been compared with the ones obtained by FEM approach.

The material properties used in the results shown in this paper are the properties of the iron
crystal (Tab.1)(Cubic elastic tensor), but the approach was also applied to other materials such
as Aluminium, Nickel or Titanium with similar accuracy.

Comparison of the FEM and the SCM

FEM simulations have been performed on a cube of 686 grain, with 20 different crystallographic
orientation distributions on a Kelvin structure (Fig. 1) to simplify the study of the neighborhood
effect and cancel any size and shape effect (all grains are identical). Periodic boundary condi-
tions have been applied in order to cancel any border effects. Arbitrarily, a uniaxial loading E0

is applied to the cube, where Eij = 0 except for E33 = 0.1%. The resulting effective stress is
Σeff

1st = 274MPa. The crystals are purely elastic, and the elastic tensor of the iron crystal (Tab.1)
has been used for all the simulations that are presented in the rest of the paper.

On Fig.2 are presented the mean first principal stress in each grain obtained with the FEM and
the SCM. For a given grain Young modulus, the FEM shows a dispersion of the stress where
as the SCM shows only one possible stress solution to the problem. The SCM is actually an
average of the stress observed with the FEM. This dispersion is clearly related to some neigh-
borhood effect. With some neighborhood conditions, that could lead to significant increase of
the local stress compared to the SCM. The highest stress observed with the SCM is approxi-
mately 108% of Σeff

1st when the highest stress observed with the FEM is 120% of Σeff
1st .

Study of the neighborhood effect

The SCM showed to have a good first approximation of the stress in the grain but it clearly
needs to be corrected to consider the neighborhood effect and predict more realistic and statis-
tical results. In order to do that, the influence of one or several grains on a given grain has been
studied depending on their spacial and crystal orientation distribution.
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Figure 2: First principal stress in each grain of the polycrystal normalized by the macro-
scopic first principal stress: Comparison between the FEM and the SCM

Grain interaction

In order to see the influence of one grain on an other grain in the polycrystalline Kelvin structure,
the behavior of two grains A and B immersed in an infinite homogeneous matrix has been
documented as a function of their crystal orientations and their relative position.

Firstly, the macroscopic properties of the material are attributed to the homogeneous matrix and
the central grain A, and crystallographic properties are attributed to grain B.

The first principal stress of grain A (0;0;0) has been observed depending on the position X, Y,
Z and the crystal orientation of grain B. An influence factor αA

B of grain B on grain A is defined
such as αA

B = σA
B/σ

A
0 , where σA

0 is the first principal stress of grain A immersed alone in the
matrix and σA

B is the first principal stress of grain A immersed in the matrix with grain B.

Figure 3: Illustration of the
local base formed by grains
A and B

It was found that if the elastic tensor CB of grain B is expressed
in the local base where the axis Z is parallel to the loading axis
and the axis X points toward the projection of grain B on the
plan perpendicular to the loading direction (Fig. 3), the com-
ponents C3333, C1133 or C3313 of this elastic tensor CB directly
influence the factor αA

B (Eq.1).

αA
B(X, Y, Z) = a

(X,Y,Z)
1 × C3333

+ a
(X,Y,Z)
2 × C1133

+ a
(X,Y,Z)
3 × C3313

+ a
(X,Y,Z)
4

(1)



Figure 4: Illustration of the first assumption (each color corresponds to a different crys-
tallographic orientation): the influence of grain B on grain A is independent of the orien-
tation of grain A

Figure 5: Illustration of the influence of each individual grain compared to the influence of
several grains (each color corresponds to a different crystallographic orientation): the in-
fluence of several grains is equal to the product of the influence factor of each neighboring
grain

The coefficients a(X,Y,Z)
i are calculated from the FEM results for each different relative position

(X;Y;Z).

The calculations were run with grain A having the effective properties of the material. In order
to generate the equation for any orientation of grain A, the crystal properties are attributed to
grain A and calculations are run. It has been observed that the influence of the crystal orien-
tation of grain A is negligible compared to the influence of the crystal orientation of grain B,
suggesting a first assumption for the model under development: the influence of grain B on
grain A is independent of the orientation of grain A (Fig.4). With that assumption made, equa-
tion 1 can be used to calculate the influence factor αA

B of grain B on grain A for any crystal
orientation of grain A.

Influence of several grains on another grain

The influence of several grains on the central grain A has been studied. Knowing the influence
factor αA

Bi of each neighboring grain Bi on grain A, it has been observed that the influence of
several grains on grain A is equivalent to the product of the influence factor of each neighboring
grain (Fig.5). A second assumption can be made: the influence of several grains is equal to the
product of the influence factor of each neighboring grain (Eq.2)



Figure 6: Illustration of the influence of several grains with the same set of influence fac-
tors but with different repartitions (the grains in blue correspond to the lowest influence
factor αA

Bmin and the grains in red to the highest influence factor αA
Bmax): the influence of

a neighboring grain on the central grain is not affected by the other neighboring grains.

αA
All =

N∏
n

αA
n (x, y, z, ϕ1,Φ, ϕ2) (2)

A consequence of the latter observation and assumption is that the distribution of the neigh-
borhood doesn’t affect the results as long as the αA

Bi values do not change. In figure 6 are
illustrated 4 neighboring grains with the lowest influence factor αA

Bmin and 4 other neighboring
grains with the highest influence factor αA

Bmax distributed differently. It is observed that no mat-
ter how those grains are distributed, the stress in the central grain is not significantly affected
(Fig.6). A third assumption is made : the influence of a neighboring grain on the central grain
is not affected by the other neighboring grains.

Definition of the Cellular-Automaton

Based on the three assumptions declared in the previous chapter, a cellular-automaton (CA) has
been developed using Self Consistent calculations to evaluate the first principal stress σA

0 of
grain A. The solution σA

SCM of the SCM for a spherical inclusion with the elastic property of
grain A (a Kelvin structure’s cell can be considered as spherical) immersed alone in the matrix
was used as the base for the calculation. The CA solution consists of applying to the SCM
solution the influence factor of each neighboring grain that is considered to have a significant
influence:

σA
AC = σA

SCM ×
N∏
n

αA
n (X, [ϕ1; Φ;ϕ2]) (3)

In Eq.3, N is the number of neighboring grains considered, X is the vector form by grain A
and the neighboring grain n, [ϕ1; Φ;ϕ2] are the Euler angles representing the orientation of the
neighboring grain n, and the influence factor αA

n of grain n on grain A is calculated with the
Eq.1.

Results of CA calculation are shown in Fig.7 and 8, presenting the first principal stress in each
grain obtained with the FEM and the CA. Four types of neighborhood are presented:

• 0 neighboring grain is considered. In other words, this is the SCM results.

• The first layer of neighboring grains are considered (N = 14 grains): all neighboring
grains that have a distance from the central grain d ≤ 2r, where r is the radius of one
grain.

• The second layer of neighboring grains are considered (N = 64 grains): d ≤ 4r.

• The third layer of neighboring grains are considered (N = 258 grains): d ≤ 6r.
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Figure 7: First principal stress in each grain of the polycrystal normalized by the macro-
scopic first principal stress: Comparison between the FEM, SCM, and CA
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Figure 8: Comparison of the FEM results with the CA results



Table 2: Comparison of the FEM results with the CA results

N = 0 N = 14 N = 64 N = 258
Normalized average difference〈∣∣∣σgrain

EF − σgrain
SC

∣∣∣
Σeff

EF

〉
grain

3.42% 1.59% 1.22% 1.04%

Normalized maximum difference

maxgrain


∣∣∣σgrain

EF − σgrain
SC

∣∣∣
Σeff

EF

 16.93% 8.80% 5.78% 5.41%

In Fig.7 are presented the FEM, SCM and CA (with 258 neighboring grains considered) results.
As we can see, consideration of the neighborhood effect in the model generates a dispersion of
the stress similar to the one observed for the FEM results. If we take a closer look at the local
behavior on Fig.8 and Tab.2, it is observed that the more neighboring grains are considered, the
closer the CA results are to the FEM ones. The accuracy of the CA with N = 258 is three times
better than a simple SCM, and the extreme values are better captured. For information, using
the same computer, the FEM simulation takes approximately 40 minutes to be completed when
the CA with N = 258 takes 40 seconds.

Conclusions

The present work shows the importance of the neighborhood effect in polycrystal fields. From
the observations of the Finite Element simulations, a cellular automaton has been developed tak-
ing into account the neighborhood effect. The model is based on the Self-Consistent model to
which an influence factor is applied depending on the orientation and distribution of the neigh-
borhood of the grain. Taking the FEM results as a reference, the model showed a significant
improvement of the results compared to the original SCM.
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