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Abstract 
Finite element (FE) method is extensively employed to investigate the biomechanical behavior 
of bone structures. Material and morphological information of bone samples are typically 
provided by computed tomography (CT) scanning. Assuming that density and elasticity of bone 
are correlated, many studies have proposed different density-elasticity relationships to 
determine bone elastic constants. Herein, an innovative method for determining a single 
mathematical relationship between bone density and elasticity is proposed. Density distribution 
and morphology of a bovine bone were obtained from CT images, and the natural frequencies 
were measured using experimental modal analysis. The relationship between density and 
elasticity has a standard mathematical form with variable constants. Genetic algorithm (GA) 
was used to obtain the constants by minimizing the discrepancy between experimental and FE 
results. The relationship was then used in material properties assignment process of FE 
modeling and proved to be valid by predicting the natural frequencies of bone in different 
boundary conditions (BCs).  
Keywords: Density-elasticity relationship, Modal analysis, Bone tissue, Computed 
tomography, Finite element method 

1. Introduction 

Accurate subject-specific finite element models of bone are of great importance in many state 
of the art research and clinical applications. FE analysis of bone provides valuable information 
about strain and stress fields within the tissue. Results can be used in fracture risk assessment, 
designing prosthetic implants and other clinical applications. Dynamic behavior and 
characteristics of bone such as natural frequencies, mode shapes and response to dynamic loads 
can also be determined by FE analysis. Obtaining the fundamental frequencies of bone, in 
particular, has numerous practical applications in medicine and bioengineering. It has been 
shown that loads with frequencies close to natural frequencies of bone can enhance bone 
apposition [1]. In fact, patient-specific natural frequencies of targeted bones would help 
physicians to optimize vibration therapies and exercise regimens and find a solution which suits 
the patient best [2]. In addition, resonance frequencies and mode shapes of bone provide 
valuable information about density-elasticity relationships [3] and orthotropic properties of 
long bones [4]. 
To generate a subject-specific model, geometry and material properties of bone are usually 
derived from computed tomography images. The CT images are processed to create three-
dimensional (3D) geometry of bone segments. Mechanical properties of bone can also be 
derived from CT data using mathematical relationships, which relate CT values to material 
properties [5]–[9]. It has been demonstrated that the relationship between CT numbers and 
apparent density of bone tissue is approximately linear [10]–[12]. However, obtaining an 
accurate relationship between density and mechanical properties of bone, particularly elasticity, 



is more challenging. Accurate determination of these relationships is important for developing 
precise FE models. 
The relationship between Young’s modulus and bone density is described by many different 
empirical models in the literature [13]–[22]. This relationship is generally reported in power or 
linear form. The complexity of experimental techniques involved in measuring mechanical 
properties of an anisotropic and porous material can explain the disparity in predicted values of 
Young’s modulus in different studies. To determine the stiffness, commonly a bone specimen 
is loaded in a load frame. During the mechanical test, different types of error can arise which 
makes it difficult to obtain bone stiffness. Methods of measuring bone deformation are widely 
discussed in the literature [8]. 
To overcome the difficulties in traditional mechanical testing and improve the accuracy of the 
density-elasticity relationship, we have developed a new method which determines the model 
parameters in the general form of the density-elasticity relationship based on the results of 
experimental modal analysis using GA and FE methods. Unlike many reported models in the 
literature, this method leads to a single density-elasticity equation which is valid for all ranges 
of bone density.  
 
2. Materials and methods 
2.1 Experimental determination of natural frequencies 
Modal analysis is a successful method to validate FE models of bone and to determine bone 
elastic constants [23] Simple experimental equipment, reasonably short measurement time and 
accuracy of measurements make modal analysis a potentially useful method for obtaining 
material properties.   
Natural frequencies of a fresh-frozen bovine femur bone were obtained using impact hammer 
and shaker tests in free-free and clamped-free boundary conditions. To simulate the free-free 
BCs, soft elastic straps were used to suspend the sample.  
The experimental setup of the shaker test is presented in Fig. 2. Computer generated random 
wave signals containing frequencies from 0 to 5000 Hz were used to excite the bone. Signals 
were amplified by a signal amplifier. Excitation and response signals were detected by 
accelerometers (DJB A/120/VT, DJB Co., France). 
The experimental setup of the hammer test is presented in Fig. 3. The bone is excited by hitting 
an impact hammer equipped with a force transducer to five different points normal to the 
surface to excite different modes of vibration. An accelerometer is used to detect the bone 
response. The tests were then repeated for different positions of accelerometer. Charge 
amplifiers are used to condition the force and acceleration signals. 
Applying a fast Fourier transform (FFT) algorithm, the frequency response of bone was 
analyzed considering the excitation and response signals. The resonance frequencies of 
different vibration modes were obtained using frequency response curves. 
 



     
Figure 1. Shaker test setup; (a) free-free (b) clamped-free BCs 

 

 
Figure 2. Measuring vibration response of bone using shaker 

 

 
Figure 3. Measuring vibration response of bone using modal hammer 

 
2.2 Finite element modeling 
A bovine femur was CT scanned with a slice thickness of 1 mm (16 slice Siemens SOMATON 
emotion), and a three dimensional model of bone was created using Mimics© v17, 
MATERIALISE. Exporting the geometry from MIMICS to 3-Matic® v17, tetrahedral volume 
meshes were generated. A standard procedure (Materialise NV, Leuven, Belgium, 2010) was 
followed to obtain the three dimensional geometry from DICOM images and mesh the model. 
The acquired mesh was exported to a commercial FE software for numerical analysis.  
 

(a) (b) 



 
Figure 4. A CT image of the bovine bone 

 
2.3 Material properties assignment 
Based on Hounsfield gray values, Mimics can assign material properties to volumetric meshes. 
After bringing the mesh back to Mimics, an average Hounsfield value is calculated for each 
element, and the range of gray value is divided into equally sized intervals to represent different 
material groups. In this study, five material groups were used to model the bone.  
The effective bone density and CT numbers are assumed to be linearly correlated [7], [20], [25].  
The following equation was used to assign apparent density to the mesh: 
 

 𝜌 = 4.64×10)*×𝐻𝑈 + 1 (1) 
 

where 𝜌 is the apparent density (g/cm3) and HU is the CT number (Hounsfield unit). 
Considering the literature, the relationship between apparent density and Young’s modulus is 
generally reported in the following form: 
 
 𝐸 = 𝑎𝜌0 + 𝑐 (2) 

 
where E is the Young’s modulus, 𝜌 is the apparent density (ash, wet or dry) and a, b and c are 
the model parameters. A Poisson ratio of 0.3 was considered for all finite elements. Here, 
experimental results and numerical methods were used to determine the model coefficients. 
 
2.4 Numerical eigenfrequency analysis 
The first five natural frequencies and mode shapes of the bone model were calculated using 
COMSOL Multyphysics v5 without considering the damping effect. The generated mesh 
together with the material properties were imported to COMSOL. The density-elasticity 
relationship and model parameters a, b and c were defined in COMSOL according to [20], as a 
first approximation. LiveLink ™ for MATLAB was used to apply the genetic algorithm and 
find the optimal coefficients. 
 
2.5 Obtaining coefficients of density-elasticity relationship using GA 
The FE model in Matlab was changed to represent a function with the coefficients a, b and c as 
inputs and the first five natural frequencies as outputs. Assuming that the most exact density-
elasticity relationship can result in the most precise values of natural frequencies, we defined 
an optimization problem to obtain the coefficients in Eq. 2. The following objective function 
was taken to represent the discrepancy between numerical and experimental results: 
 
 𝑂𝐹 = (𝑓67)𝑓87): + (𝑓6:)𝑓8:): + (𝑓6;)𝑓8;): (3) 



 
where 𝑓6< is the ith natural frequency obtained from experimental modal analysis, and 𝑓8= is the 
jth natural frequency obtained from numerical eigenfrequency analysis. The genetic algorithm 
toolbar in Matlab® R2014a was used to minimize the objective function. The initial population 
was chosen to be [a, b, c] = [2, 3, 0], and the boundary for searching the optimal answer was 
[0-10] for all parameters. Population size and number of generations were set to 40 and 10 
respectively. 
 
2.6 Validation 
The acquired density-elasticity relationship was used to assign material properties to the FE 
model of bone with clamped-free BCs. The results of eigenfrequency analysis were compared 
with the experimental natural frequencies to assess the validity of the relationship in different 
BCs. Other material assignment strategies were also examined, and the results were compared. 
 
3. Results and discussion 
Both hammer and shaker tests were performed to measure natural frequencies of bovine bone 
in free-free boundary conditions. Accelerometers used in shaker test were only able to measure 
bending vibrations in the x direction.   
 

Table 1. Natural frequencies of bone in free-free BCs; hammer and shaker tests 

mode shape/direction bending torsion bending 
x y - x y 

natural frequency 1st 2nd 3rd 4th 5th 
hammer (Hz) 646 834 1278 1875 2342 
shaker (Hz) 645 - - 1798 - 

 
Table 2 density of different material groups 

Material number 1 2 3 4 5 
Density (g/cm3) 711.9 1010.5 1309.0 1607.5 1906.1 

 
Table 2 represents the apparent densities of five material groups which are calculated using Eq. 
1. Many density-elasticity relationships are proposed in the literature for specific ranges of 
density which result in different values of elasticity. 
In order to obtain more accurate Young’s modulus values, genetic algorithm was applied to 
minimize the objective function defined in Eq. 3. Table 3 represents the results of this 
optimization process. The natural frequencies were determined using different density-
elasticity relationships (initial value, GA and Baca et al), and the results were then compared to 
experimental findings. 
 

Table 3 results of GA optimization 

Study ▶  GA Initial population Baca (2008) experiment 

Natural 
frequency 

1 623.3 549.3 572.7 646 
2 825.7 726.2 757.2 834 
3 1286.5 1132.0 1179.0 1278 
4 1877.5 1640.9 1706.2 1875 
5 2267.9 1981.3 2061.3 2342 



Objective 
function OF 25.65 205.68 145.16 - 

Density-
elasticity 
equation 

coefficients 

a 1.26986 2 2.065 - 
b 3.81558 3 3.09 - 
c 2.62971 0 0 - 

 
Considering the values of objective function, it is clear that genetic algorithm can be utilized to 
find the coefficients of density-elasticity relationship which lead to an accurate FE model. 
Although the first three natural frequencies were used during the optimization process, results 
are accurate in all modes of vibration. This fact indicates that the resultant equation predicts the 
real values of Young’s modulus and not those which only minimize the objective function 
numerically. 
 

 
Figure 5. The first five natural modes of vibration; free-free BCs 

 
The first five natural frequencies of bone subjected to clamped-free BCs, based on different 
density-elasticity relationships, are presented in Table 4. The values are compared with 
experimental results and the proposed GA method. 
 
Table 4 first five natural frequencies of bone in clamped-free BCs; experimental results 

vs. FE  

 frequency1 frequency2 frequency3 frequency4 frequency5 mean 
%error 

Shaker test 63 - - 556 - - 
GA method 62.3 80.8 472.4 552.4 656.6 0.879 

literature 
 [13] 59.90 77.00 438.95 510.50 605.60 6.196 
[17] 55.68 72.20 387.25 456.60 546.85 14.417 
 [20] 60.40 77.70 448.35 524.70 621.36 4.520 

 
The suggested method results in more accurate natural frequencies not only in free-free BCs 
(which were used to obtain the model coefficients) but also in clamped-free BCs with totally 
different values of resonance frequencies. The predicted values of local Young’s modulus can 
therefore be considered as true and reliable. 



 
Figure 6.  The first five natural modes of vibration; clamped-free BCs 

 
A sensitivity analysis was performed to investigate the effect of changing model parameters in 
equation (2) on the the first five natural frequencies of the bone. In Figures 7 through 9, two 
parameters were kept constant while the third parameter changed around a mean value. 
Variation of the Poisson’s ratio did not have a significant effect on the bending natural 
frequencies. Torsional natural frequency, however, slightly decreased with increasing Poisson’s 
ratio values (Fig. 10). 
 

 
Figure 7. sensitivity analysis; parameter a  

 

 
Figure 8. sensitivity analysis; parameter a 

 

 
Figure 9. sensitivity analysis; parameter a 

 

 
Figure 10 sensitivity analysis Poisson’s ratio 

 
 



Local optimal points were avoided in GA, because of mutations and the final result were closer 
to the global minimum. However, Genetic algorithm could be time consuming when the number 
of generations and population increase. To avoid this problem, number of generations and 
population were limited to 10 and 40, respectively.  
There were several limitations associated with the FE model. Five material groups were 
considered to be enough to represent the distribution of the mechanical properties. Additionally, 
the effect of marrow on the bone response was presumed negligible, and the material behavior 
was assumed to be isotropic and linear elastic. A more advanced model may include more 
groups of materials or a continuous distribution of material properties and consider the effects 
of nonlinearity, anisotropy and bone marrow in the model. 
 
4. Conclusion 
In this study, the density-elasticity relationship of a bovine bone was determined by introducing 
and solving an optimization problem. Genetic algorithm was used to minimize the difference 
between natural frequencies obtained from experimental and FE modal analyses. The 
assumption was that the experimental and numerical results agree, if the material distribution 
in model approaches the real distribution. 
Using the density-elasticity relationship obtained by GA, the numerical resonant frequencies 
were in good agreement with the experimental results in all modes of vibration with free-free 
and clamped-free BCs. It can be concluded that the relationship between density and elasticity 
of bone can be determined with a single mechanical test (experimental modal analysis) and 
solving an optimization problem based on FE analysis, where the results are valid for all bone 
density ranges. 
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