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Abstract 

In this paper, an improved topology optimal model of continuum structures subject to frequency 
constraints is established based on Independent, Continuous, Mapping (ICM) method. Firstly, two 
filter functions- Power Function(PF) and Composite Exponential Function(CEF) are selected to 
recognize the design variables, and  to implement the changing process of design variables from 
“discrete” to “continuous” and back to “discrete”. Explicit formulations of frequency constraints are 
given based on Rayleigh’s quotient, filter functions, first -order Taylor series expansion. Then, an 
improved optimal model is formulated using different filter functions and the explicit frequency 
constraints.  The program based on the dual sequence quadratic programming (DSQP) and global 
convergent method of moving asymptotes algorithm(GCMMA) for solving the optimal model is 
developed on the platform of MSC.Patran & Nastran. Finally, numerical examples are given to 
demonstrate the validity and applicability of the proposed method. By comparison, we find that the 
results from DSQP method equipped with filter function of composite exponential function are a little 
better than other methods for the problem of frequency constraints. 
Key words：Topological optimization·Continuum·Frequency constraint· Independent Continuous 
and Mapping(ICM) method·filter function 
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Introduction   

The essence of topology optimization lies in searching for the optimum path of transferring loads, 
therefore the computational results of topology optimization are usually more attractive and more 
challenging than the results of cross-sectional and shape optimization. Although topology 
optimization is only in conceptual design phase in engineering, the design results significantly 
impacts the performance of the final structure. Since the landmark paper of Bendsøe and Kikuchi[1], 
numerical methods for topology optimization of continuum structures have been developed quickly 
in application[2]. The known are homogenization method[5],6], variable density method(including 
SIMP and RAMP interpolation model)[7-10], evolutionary structural optimization (ESO) [11-13], level 
set method [14-16]and so on. 

Compared with static topology optimization, the optimization algorithm on dynamic topology 
optimization is more complicated and the calculation of sensitivity analysis is more enormous. 
Frequency topology optimization is of great importance in dynamic topology optimization and 
engineering fields. Topology Optimization with respect to frequencies of structural vibration was 
first considered by Diaz and Kikuchip[17], who studied the topology optimization of eigenvalues by 
using the homogenization method where reinforcement of a structure is optimized to maximize 
eigenvalues. Subsequently, many researches focus on to expand topology optimization in dynamic 
problems. Ma et al. [18,19], Kosaka and Swan [20]presented different formulations for simultaneous 
maximization a set of frequencies of free vibration of disk and plate structures. Krog and Olhoff [21], 
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Jensen and Pedersen[22] utilize a variable bound formulation that facilitates proper treatment of 
multiple frequencies. Pedersen[23]deals with maximum fundamental frequency design of plates and 
includes a technique to avoid spurious localized modes. Jensen and Pedersen[22] presents a method 
to maximize the separation of two adjacent frequencies in structures with two material components. 
Zhu & Zhang[24] emphasize on layout design which is related to optimization of boundary 
conditions and it is studied to maximize natural frequency of structures. In 2007，Du and Olhoff[25] 

introduced SIMP method for maximization of first eigenvalue and frequency gaps. In 2009, Niu et 
al.[26] proposed a two-scale optimization method and found the optimal figurations of 
macrostructure- microstructure of cellular material with maximum structural fundamental frequency. 
Huang et al.[27] investigated the maximization of fundamental frequency of beam, plane and three-
dimensional block by applying a new bi-directional evolutionary structural optimization (BESO) 
method, and dealt with localized modes by modifying the traditional penalization function of SIMP 
method. Qi et al.[28] presented a level set based shape and topology optimization method for 
maximizing the simple or repeated first eigenvalues of structure vibration. Further development on 
frequency topology optimization see references[29-33]. 

Independent, Continuous and Mapping (ICM) method[34], which is proposed by Sui for skeleton 
and continuum structural topology optimization in 1996. This method generalizes topological 
variables abstractly independence of the design variables such as sectional sizes, geometrical shape, 
density or Young’s modulus of material. Filter functions are used to map the changing process of 
topological design variables from “discrete” to “continuous” and back to “discrete”. The smooth 
model with minimizing structural weight is established and solved by the traditional algorithms in 
mathematical programming. This model is beneficial to maintain the consistency of objective and 
constraint in cross-sectional optimization, shape optimization and topology optimization. 

In this paper, we extend our previous research[34-36] primarily about Independent, Continuous and 
Mapping (ICM) method on static topology optimization issues of continuum structures to dynamic 
topology optimization field. A model of topology optimization for the lightest structures with 
frequency constraints is investigated. An improved model of continuum topology optimization with 
Composite Exponential Function(CEF) as filter function instead of Power function is established. 
Among the methods of mathematic optimization model solving, mathematical programming (MP) 
method is popular. Because of the nonlinearity of mathematic optimization model in topology 
optimization of continuum structure，sequential quadratic programming (SQP) in the MP method 
are widely used. And the dual theory is used to convert the constrained optimization model to one 
with reduced number of design variables, and the solving efficiency is greatly improved. Therefore, 
dual sequential quadratic programming (DSQP) algorithm is employed in this paper, and the results 
is compared with that of the global convergent method of moving asymptotes algorithm 
(GCMMA)[37,38]. 

This paper is organized as follows. In section 2, the optimization formulation and description 
of filter function are introduced. In section 3, an improved frequency topology optimization model 
based on ICM method is built. Optimal algorithms to solve the mathematical optimization problem 
are given in section 4. Numerical simulations are presented in section 5. In section 6, conclusions 
are given. 

1 Problem formulation and description of filter function  

1.1 Optimization problem formulation 

For structural cross-section and shape optimization, natural frequency of structure is often taken 

as constraint. We denote if  as the frequency of i-th order, and ii ff ,  are the low and up bound of i-

th order frequency respectively. They satisfy the following inequality: 
(i) 11 ff  ; 
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(ii) ii ff   and 11   ii ff in non-frequency band constraints. 

For elastic structure, the usual relation between frequency f and eigenvalue is 22 )( f  . 
Therefore, the   frequency constraints can apparently be transformed into eigenvalue constraints 
using the formula. Here we uniformly use   )(g   to generalize (i) and (ii) based on 22 )( f  . 

Thus, the model of continuum topology optimization with frequency constraints can be 
formulated as follows 
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where t  and W  denote the topological design variable vector and the weight of structure. i  and j  
are the i-th element and the j-th order frequency respectively, J  and N  represent the total number 
of constraints and elements. And t  is the lower bound of design variables, e.g. 001.0t . 

1.2 Description of the filter function  

In  order to develop the model ICM method, we firstly investigate the essential part of ICM—the 
filter function. Its definition and choosing determine the establishment and solving of optimization 
model, and further filter funciton will make great impact on the final performance of topology 
optimization.  In order to map the  topological variables from “discrete” to “continuous”, Sui(1996) 
studied the filter function )( itf . 

Several types of filter function are suggested in ICM method[34]. Among which, Power Function(PF) is used 
frequently  in application[36] and is as follows 

1,)(  
ii ttf                                                              (2)  

Here it  denotes i-th design variable.  is a positive constant. 
 We introduce a new filter function -Composite Exponential Function(CEF) to take the place of 

the old one  and it is as follows: 

1

1
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e
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 is a given positive constant and it is  determined by numerical experiments with different problems. In section 5, 

we compared the performance of the two types of filter function. 

Denote )( iw tf , )( ik tf and )( im tf  as filter functions for frequency topology optimization and they are given as  

follows: 
0)( iiwi wtfw  ,

0)( iiki tf kk  , 
0)( iimi tf mm                                       (4) 

Here 0
iw , 0

ik and 0
im are the element weight, element stiffness matrix and element mass matrix of 

original structure before the process of topology optimization, respectively. iw , ik and im are the 
ones in the process of  topology optimization, respectively. 

2 Improved model based on ICM method 

2.1 Determination of eigenvalue 
In the finite element analysis the dynamic behavior of a continuum structure can be represented 

by the following general eigenvalue problem 
( ) 0j j K M u                                                                                  (5) 



4 
 

where, K is the global stiffness matrix and M is the global mass matrix. jλ  
is the jth eigenvalue and 

ju is the eigenvector corresponding to jλ . The eigenvalue jλ  and the corresponding eigenvector ju  

are related to each other by Rayleigh quotient 

 
T
i i

j T
i i

 
u Ku

u Mu
                                                                    (6) 

2.2 Sensitivity analysis 
Since eigenvalue λj is implicitly related with topology variable t , we use first-order Taylor series 

expansion for eigenvalue to express their relationship explicitly. At first, the sensitivity of 
eigenvalue with respect to design variables should be derived.  

Take the reciprocal of stiffness filter function as design variables as follows 
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x
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We have  
1( )i k it f x                                                                                          (8) 

Therefore, the stiffness matrix filter function, mass matrix filter function and weight filter function 
are given as follows 
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In view of (6), we have the derivative of jλ to design variable as follows: 
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Considering Eq.(4) and (9), the global stiffness matrix K and the mass matrix M can be calculated 

by 
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Substituting Eq.(11) to Eq.(10), we have 
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In (12), T1

2ij j i jU  u k u
 
and T1

2ij j i i jV λ u m u  represent the strain energy and the kinetic energy of ith 

element corresponding to the jth eigenmode, respectively. At this moment, the derivatives of 
eigenvalue with respect to all design variables can be obtained by subtracting the strain energy and 
kinetic energy for element mode from the results of modal analyses. 

2.3 Explicit expression of eigenvalue 
Using the first-order Taylor series expansion, the approximate expression of eigenvalue )(tj  

can be obtained  
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where superscript  is the number at the  -th iteration. 
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 Substitute Eq.(10) into Eq.(13), we get 
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The constraint ( )j j  x  can be rewritten as 
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Then frequency constraints can be simplified by the following inequality: 
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Thus ends the process of explicitly approximation of the frequency constraints. 

2.4 Improved model of frequency topology optimization  

Based on the above analysis, the model of topology optimization with frequency constraints by 
introducing filter function can be transformed as follows: 
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By using explicitly approximation of the frequency constraints, the model (17) can be written as 
follows: 
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3. Solution of the improved topology optimization model  

3.1 Standardization of objective  
Considering model (18) is a programming with nonlinear objective and linear constraints following 
the explicit process of frequency constraints, the second-order Taylor series expansion is used to 
approximate the objective function and ignore the constant item. The model is transformed into the 
following quadratic programming model: 
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As objective function varies with different filter functions, investigation of the different cases 
following different types of filter functions is necessary. Here we focus on PF and CEF. 

When PF is applied as the filter function, it is given as follows: 
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are undetermined parameters. 

When CEF is applied as the filter function, it is given as follows: 
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Similarly, the objective function in (20) can be expressed as 
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They are two undetermined parameters. 

3.2 Solving algorithms of optimization model 
With the above analysis and solving of (19), DSQP and GCMMA are employed. The optimal 

topology structure with continuous design variables is obtained. The iterating computation will end 
until following condition is satisfied  
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x* obtained at this moment is just the optimal solution of Eq. (19) however. Then t* can be 

calculated based on Eq. (8). Let 
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 and modify the last structure via immediate iteration 
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optimizing, and again enter next iteration. Similarly, iterating in this way until the following 

condition is satisfied 
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Where )(W  and )1( W  is the structural weight of previous iteration and current iteration, respectively. 
 is a precision of convergence, which is prescribed to be 0.001 herein. 

3.3 Discretization of continuous design variables 

To map design variables from “continuous” to “discrete” back, filter threshold value is needed. We 
denote filter threshold value as 0T  to determine whether the element is deleted or not. In order to 
measure the discreteness degree of topology variables, we use Mnd[39] as a criterion and it is given 
(21).   
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where iT  is the topological variable value for the i-th element and n is the total number of the 
elements. Following (21) , if all the topological values are 0 or 1, Mnd  is 0; if the topological values  
are 0.5, Mnd is 1;  the more closer of the topological values  to 0 or 1, the more smaller value of Mnd 
and the better of the optimal result. 

4. Numerical examples 
In this section, we illustrate the proposed method with three examples for the topology 

optimization with frequency constraints. The first one is a rectangular beam with two frequency 
constraints. We address the ability of schemes to obtain discrete solutions and compare the 
solutions obtained using two different filter function. We show how it is possible to formulate and 
solve optimal problems. The second one is a cylindrical shell structure by second frequency 
constraint. We aims to compare with the results by using two algorithms combined with two filter 
functions. For the computation, the initial values of topology variables are all given as unit (t=1), 
the lowest bounds of topology variables and the convergence precision values are 0.01 and 0.001, 
respectively. 
Example 1 Rectangular beam with two frequency constraints 
It is a rectangular beam with two ends clamped and the thickness of beam is assumed as 1mm 
shown as Fig.1. The design domain is 140mm×20mm, and a concentrated mass (Mc = 50g) is 
attached at the center of base structure and it has inertia only in Y direction. The Young’s modulus 
E = 100GPa, Poisson’s ratio μ=0.3 and mass density ρ = 1000kg/m3. The structure is divided into 
140×20 four-node rectangular elements. We set frequency constraints for the design problem is f1≥

8000Hz, f2≥60000Hz. The topology optimization equation was formulated combine PF and CEF 
filter functions, respectively. 

 
Fig.1 Geometry model of clamped beam 

 
 



8 
 

(a)Optimal topology 
configurations with PF 

(b)Optimal topology 
configurations with CEF 

Fig.3 Optimal topology configurations with PF different filter functions 
The solving topology configuration of the beam with different filter functions is given in Fig.3. 

The iterative curve of computation with different filter functions are described in Fig.5-8. To 
describe the dynamics of optimal structure, the first three modal shapes of optimal structure with 
two filter functions are computed and displayed in Fig.4-6. The frequency and structural weight 
changing with time in the optimization process are presented in Fig.7 and Fig.8 with different filter 
functions. The optimal results with different filter function are shown in Table.1 and the computed 
distribution of topological design variable values is listed in Table 2.       

Order  PF CEF 

1 

2 

3 

Fig.4 Modal shapes of optimal structure with different filter functions 
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Fig.5 Iteration curves of frequency with PF
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Fig.6 Iteration curves of frequency with 

CEF 

Table1 Optimal results with different filter functions 
 
 

 
 
 
 
 

Filter function PF CEF 

Iteration 45 51 

Mass (g) 2.067093018 1.9778114014 

f 1 (Hz) 8003.934082 8003.0073242 

f 2 (Hz) 59968.550781 60027.289063 
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Fig.9 Geometry model of 
cylindrical shell 

Table2 Distribution of topological value with different filter functions 

Distribution of topology value PF CEF 

(0,0.1] 240 472 

(0.1,0.2] 72 60 

(0.2,0.3] 52 56 

(0.3,0.4] 24 64 

(0.4,0.5] 52 48 

(0.5,0.6] 108 44 

(0.6,0.7] 160 28 

(0.7,0.8] 232 84 

(0.8,0.9] 216 188 

(0.9,1] 1644 1756 

Total number of element 2800 2800 

Mnd 26.74% 16.36% 
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Fig.7 Iteration curves of constrainted 
frequencies with different filter functions 
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Fig.8 Iteration curves of mass with 

different filter functions 

Example2 Cylindrical shell with the second frequency constraint 

A cylindrical shell structure with thickness is 1m, bus-bar a= 20m, arc 
b=20m, central angle α =0.25 and radius R=80m was shown in Fig.10. In 
addition, a concentrate mass M=312000kg was attached on the center of 
cylindrical shell. The Young’s modulus E = 100GPa, Poisson’s ratio 
μ=0.3 and mass density ρ = 7800kg/m3. The structure was divided into 
30×30 four-node rectangular elements. The constraint frequency for the 
design problem is f2≥28 Hz. The topology optimization equation was 

formulated combine PF and CEF filter functions, respectively.  
 

 
Optimal topology configurations after optimization are shown in Fig.10. Iteration curves of 

first three frequencies with different algorithms and filter functions are given in Figure11. From 
Fig.12 and Fig.13, we can get  the iteration curves of second frequencies and the iteration curves of 
structural mass for different algorithms and  filter functions. Table3 lists the results of optimization 
for cylinder shell.  
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Table3 Results of optimization for cylinder shell 

 

 
(a) GCMMA& PF (b) GCMMA&CEF (c) DSQP& PF (d) DSQP& CEF 

Fig.1 Optimal topology configuration with different algorithms and filter functions. 
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(c) DSQP& PF (d) DSQP& CEF 
Fig.11 Iteration curves of first three frequencies with different algorithms and filter functions 

Algorithm and filter 
function 

GCMMA& PF GCMMA&CEF DSQP&PF DSQP&CEF 

Iteration 12 29 12 46 

Mass (kg) 2634298.85 2309522.20 2633713.28 2146202.33 

f 2 (Hz) 28.104261398 28.017398834 28.0874 28.0153 

f 3 (Hz) 28.114189148 28.737268448 28.1656 28.7392 
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Fig.13 Iteration curves of mass  

Conclusion 

In this paper, an improved frequency topology optimization model of continuum structure is 
developed based on ICM method. CEF- a new filter function is selected to recognize the design 
variables, as well as to implement much better the changing process of design variables from 
“discrete” to “continuous” and back to “discrete”. Explicit formulations of frequency constraints are 
given by extracting structural strain and structural kinetic energy from the results of structural 
modal analysis. An improved optimal model is formulated using CEF and the explicit frequency 
constraints.  The program based on DSQP and GCMMA for solving the optimal model is developed 
on the platform of MSC.Patran & Nastran. Finally, two examples of continuum structure are 
computed to demonstrate the feasibility of the proposed method. 
     The performance of the developed program are given in Fig.3,Table1, Table2, Table3, Fig.7, 
Fig.8, Fig.10, Fig.12, Fig.13. The results from Fig.3 and Fig.10 show that clear and stable 
configurations can be obtained using different algorithms and filter functions, and we find that 
configurations computed with DSQP combined PF and DSQP combined CEF, GCMMA combined 
PF and GCMMA  combined CEF are similar  between one and the other in Fig.10. From Table 1, 
we can see that the objective (weight )with CEF  is apparent lower than that of PF. However, the 
iterative step numbers of CEF is larger than that of PF for the convergence. We can also find that 
DSQP combined CEF has the best performance for the optimization example from the point of 
view of optimal objective in Fig.13. From the point of the discrete degree, Table2 for the 
distribution of optimal topological values show that the Mnd with PF and CEF are  26.74% and 
16.36%, the difference is apparent . CEF has the better performance in the process of optimization. 
   Although  the comparison  of  DSQP  with  GCMMA  from the  recent reference are done, and we 
have  better results coupled with two different filter function, we just give compared results based 
on ICM method. To improve continuum structure optimal algorithms , it is necessary to investigate 
the algorithm based on other methods. 
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