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ABSTRACT

The present contribution is dedicated to a Discrete Element Method (DEM)-based approach aiming at assessing the ther-
momechanical behavior of composite materials. Such an approach presents several advantages in comparison to other
classical methods as the Finite Element (FE) one. This enables a better description of the multi-scale behavior of the
material with the inherent variability related to the microscopic scale. It also gives the possibility to directly access infor-
mation such strain and stress fields and heat flux density at the scale of the discrete element. In the current work, a focus
is done on the thermoelastic properties of a heterogeneous medium composed of a single inclusion. A 2D representative
pattern is generated and discretized using a granular packing composed of cylindrical particles in contact point. This is
generated using a process based on the Lubachevsky-Stillinger Algorithm (LSA) coupled to a DEM approach based on a
smooth formulation. A hybrid-particulate model is considered to model the mechanical behavior of the material. In this
approach, the contact between two particles is described by a beam element which models the cohesive link at the micro-
scopic scale. Heat transfer is simulated using an iterative time-dependent scheme based on the Fourier’s law and Voronoı̈’s
mosaics generated from granular packings. A full range of thermoelastic properties are considered in order to investigate
several configurations of material from an insulative fibre less resilient than the surrounding matrix to a conductive fibre
more resilient than the matrix. Estimated properties are compared to those obtained from other numerical methods such
as FE and Fast Fourier Transform (FFT)-based calculations and analytical models. Results highlight the ability of the pro-
posed approach to estimate effective thermoelastic properties. These first results pave the way of interesting insights since
taking into account non-linear behaviors, interfacial effects and damaging in the proposed approach can be envisaged in a
next future.

Keywords: Discrete element method, Multi-scale approach, Composite material, Thermoelastic properties, Equivalent
continuous domain.

Introduction

Composite materials arouse the interest of many industrial sectors such as aeronautic, aerospace, automotive, building and
marine. These are indeed characterized by excellent stiffness-to-weight and thermal conductivity-to-weight ratios which
make them adaptable to different situations and make them able to serve specific purposes and exhibit desirable thermo-
mechanical properties. Besides, the development of biocomposites composed of natural fibres as flax or hemp show their
ability to respond to current environnement issues as the reduction of gas emissions. Research to increase performance
and safety of composites pieces in many fields requires the development of means of investigation concerning the behavior
in service and durability of materials. Durability characterizes the ability of the material to resist to degradation of the
thermomechanical properties over time under various types of sollicitations. The scientific challenge therefore consists in
developing reliable numerical methods for achieving a better extrapolation of the multi-scale thermomechanical behavior
of the composite as well as a better description of various phenomena arising in the material such as crack initiations,
debonding effects, local variability and heterogeneity.

Considered as an alternative to the classical FE method, the DEM is an ideal tool for solving mechanical problems
in which multiple scales and discontinuities arise. Indeed, DEM is characterized by a good description of microscopic
phenomena, an easy treatment of complex structures and a very fine time scale which enables to describe the local behavior
of a large number of particles. Among the early studies, DEM was used to explore and gain new insights into various
physical applications from geomechanics applications [1, 2] to tribological simulation approaches [3, 4] and heat transfert
simulation in multi-contact systems [5, 6]. More recently, André et al. [7] and Haddad et al. [8] considered a hybrid



particulate-lattice model in which particles are linked using cohesive beam elements. Thus, the DEM was made able to
quantitatively model the mechanical behavior of homogeneous and heterogeneous materials as well as fracture phenomena
as crack formation and propagation.

The present work is dedicated to an extension of the hybrid particulate-lattice model to the characterization of thermoe-
lastic behavior of composite materials. The main objective is to highlight the ability of a DEM-based approach to the
assessment of thermoelastic properties such as the thermal conductivity and the Young’s modulus. For this purpose, a
focus is done on a heterogeneous medium composed of a single inclusion. A 2D square-shaped representative pattern is
modeled and discretized by a granular packing composed of cylindrical particles in contact point generated with the help
of an efficient process based on the LSA [9] coupled to a DEM approach using a smooth formulation. In order to take into
account in the same time the elastic behavior and the heat transfer within the material, the initial set of contacts is densified
by a Delaunay triangulation process performed from this initial cloud of particle’s centers. It leads to a better description
of the heterogeneous medium and more accurate results by the hybrid-particulate model. Besides, a Voronoı̈ mosaic is as-
sociated to the Delaunay triangulation which provides in the same time a representative volume and transmission contact
surfaces to each particle. Thus, the heat transfer by conduction can be simulated using an iterative time-dependent scheme
based on the Fourier’s law where representative volumes and surfaces come from the Voronoı̈ mosaic.

This paper is organized as follows. First, we describe the heat transfer scheme and the hybrid-particulate approach for
simulating the thermoelastic behavior of the material. Second, the numerical model is validated in the context of a homo-
geneous material. Thermal and boundary conditions are imposed to the 2D square pattern in order to reproduce simple
tests as tensile and shear ones leading to thermoelastic properties. Finally, the DEM-based approach is applied to the case
of a single circular inclusion embedded in a matrix. For validation purposes, a large range of material configurations are
investigated from an insulative fibre less resilient than the surrounding matrix to a conductive fibre more resilient than
the matrix. Comparisons are carried out with several numerical methods, namely FE and FFT-based calculations and
analytical models.

Numerical model

Equivalent Continuous Domain

The first step of the proposed DEM-based approach consists in discretizing the continuous domain at the macroscopic
scale by a granular packing composed of cylindrical particles in 2D. The generation of the granular packing is done
by the efficient LSA coupled to the DEM using a smooth formulation. The idea is that the early stages of the LSA are
dominated by the densification of the system and consequently more efficiently performed than the last steps where the
number of contacts dramatically increases. In the coupled approach, the last steps are performed by the DEM using a
smooth formulation which is more suited to control the multiplicity of contacts than the LSA. Under several assumptions
of polydispersity, orientation and size, the granular domain can be considered as an Equivalent Continuous Domain (ECD)
in that this is enough representative of the continuous medium. First, the compacity of the granular domain has to be closed
to 0.85 which corresponds to the Random Close Packing (RCP) for a random granular packing composed of cylindrical
particles in 2D. Second, the coordination number which represents the average number of particles in contact with one
given particle has to be close to 4.5. Third, a slight polydispersity of particle size must be introduced in order to avoid
undesirable directional effects. Typically, the particle’s radius follows a Gaussian distribution law and the dispersion is
characterized by the coefficient of variation which is the ratio between the standard deviation and the average radius. For
information purposes, this is set to 0.3 in the present work. These three first parameters ensure the randomness of the
granular packing and consequently the isotropy of the ECD. In other words, this ensures that thermoelastic properties
are independent of the direction. At last, the number of particles represents the fineness of the discretized medium in
a similar way to a FE Mesh. As done by previous authors, the network of contacts is finally densified using a Delaunay
triangulation process applied from this initial cloud of particle’s centers. Thus, the coordination number comes from about
4.5 to about 5.9 and about 10% of new contacts are generated. A Voronoı̈ tessellation is finally associated to the Delaunay
triangulation. This provides in the same time an area of representation for each particle and its contacts. Such a process
turns out to be not costly in computational time as long as dynamic effects are not considered since the remeshing process
is then not required.
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Figure 1. Example of a typical 2D Voronoı̈ construction based on a granular packing constituted
of 200 particles: granular packing (a) and corresponding Voronoı̈ tessellation (b)

Heat transfer by conduction

In the present model, each particle i is related to a Voronoı̈ cell considered as its representative element (Fig. 2). This
polygon has a number of sides equal to the number of particles j in contact with the particle i. The heat flux transmitted
by the contact surface between two particles i, j is defined as follows:

Wi j = Hi, j
c (T j − Ti) (1)

where Ti, T j are the temperatures of particles i, j and Hi, j
c is the coefficient of thermal conductance: Hi, j

c =
S t

i jk
di j

, with λ the
conductivity of material, di j the distance between the centers of particles i, j and S t

i j the area of heat transmission surface
related to the corresponding polygon side.
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Figure 2. Definition of the heat transmission surface S t
i j

The corresponding equation of heat transfer is expressed for each particle i by:

Cd
i

dTi

dt
+

ni∑
j=1

Wi j = Qi (2)

where Qi represents the external heat flux associated to the particle i and ni is the number of neighbors of particle i. Cd
i is

the heat capacity of the particle given by:

Cd
i = cpρdVi (3)

with Vi and ρd are the volume and the density of the particle respectively and cp is the specific heat of constitutive material.
For the purpose of conservation mass, the discrete element mass is adjusted to the polygon one. To satisfy this assumption,
we consider ρc as the constitutive material density, ρd is then connected to ρc through the following relationship:

ρd =
Vpoly

Vi
ρc (4)



where Vpoly is the polygon’s volume. The discretization of equation for heat transfer (2) in time leads to:

T t+∆t
i = T t

i +
∆t

cpρdVi
[Qi +

ni∑
j=1

S t
i jλ

di j
(T t

j − T t
i )]︸                          ︷︷                          ︸

Qtot
i

(5)

Elastic behavior

We consider a hybrid particulate-lattice model in which the interaction between two cylindrical particles in contact is
modeled by a beam of length Lµ, Young’s modulus Eµ, cross-section Aµ and quadratic moment Iµ (Fig.3). Therefore, the
cohesive contacts are maintained by a vector of three-component generalized forces acting as internal forces. The normal
component acts as an attractive force, the tangential component allows to resist to the tangential relative displacement and
the moment component counteracts the bending motion [7].
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Figure 3. Hybrid particulate-lattice model

The cross-section Aµ is rectangular with sides e and h, where e is the thickness of the granular medium and h is the height
of the cross section defined by:

h = rµ
Ri + R j

2
(6)

where rµ ∈]0, 1] is a dimensionless radius. Ri and R j are respectively the radius of particles i and j in contact. The internal
cohesive forces between two particles i and j are given by the following system:
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where θi and θ j are respectively the rotations of particles i and j. ui, j
n and ui, j

t are respectively the normal and tangential
displacements. The linear system of equations shows the micro-macro relations applied to determine the contact forces
between two particles i and j. These relations stem from the classical stiffness matrix of the beam element model. The
translational and rotational equations of motion for a particle i are written as follows:

miüi = Fext
i +

∑
j

F j→i (8)

Iiθ̈i = Mext
i +

∑
j

M j→i (9)

where mi is the elementary mass of the particle i and Ii is the quadratic moment of inertia of the particle i. F j→i et M j→i

are respectively the force and the moment of interaction of the particle j on the particle i. Fext
i et Mext

i are respectively the
external force and moment acting on particle i. The numerical resolution is based on an explicit time integration with a
formulation based on a Verlet scheme.



Thermoelastic properties

The present section is dedicated to the description of methodologies leading to the assessment of thermoelastic proper-
ties, namely the Effective Thermal Conductivity (ETC), the Effective Young’s Modulus (EYM) and the Effective Shear
Modulus (ESM). For validation purposes, a homogeneous medium with known properties is considered and effective
thermoelastic properties are evaluated and finally compared to the expected values. From now on, the continuous domain
is a square and flat plate of side L=3.5 cm and the corresponding ECD is a granular packing composed of about 5000
polydisperse cylindrical particles.

ETC

The ETC is estimated by the following approach. A temperature difference (∆T ) is imposed between two opposite edges
of the square domain (in the present case y = 0 and y =L). The heat transfer within the homogeneous medium is described
by the time-dependent methodology described in subsection a). The heat flux density (φ) is then numerically estimated at
stationary state and the ETC λ deduced from the following Equation :

λ =
φL
∆T

(10)

In the present test, the plate is subjected to thermal and initial conditions defined as follows :


T1 : T (y = 0) = 25◦C
T2 : T (y = L) = 100◦C
t = 0 : T (y) = T0 = 25◦C 0 < y < L

(11)

Lateral boundaries are under adiabatic conditions and material parameters are listed in Tab. 1 :

Table 1. Thermal properties of the continuous do-
main

Density ρc 2600 kg/m3

Thermal conductivity λ 30 W/mK
Specific heat cp 900 J/kgK

The variation of temperatures obtained by an analytic solution [10] and the DEM-based approach at times 3 s, 30 s and
150 s are graphically shown in Fig. 4a. Both models present identical temperature profiles which exhibits the ability of
the DEM-based approach to model heat transfer in a continuous domain.

Figure 4. Comparison between analytic and discrete model solutions at several times (a) and
field of heat flux density (b)



The heat flux density is estimated at stationary state at the scale of the particle using the following Equation which is
analogous to the Love-Weber formulation.

φi =
1
Vi

∑
j

Φext, jxi j (12)

where φi is the heat flux density related to the particle i, Vi is the volume of the particle i, xi j is the length of the contact
between particles i and j, and Φext, j is the external flux applied to the particle i by the particle j. The heat flux density
φ is estimated after averaging heat flux densities over the volume of the plate. In the present example, a value of 64303
W/m2 is obtained which leads to an ETC λ=30.008 W/(m.K) which is very close to the expected value of 30 W/(m.K).
This highlights the ability of the present DEM-based approach to estimate ETC of homogeneous materials.

EYM and ESM

X

Y

Figure 5. Quasi-static tensile (a) and shear (b) tests

EYM and ESM are estimated via quasi-static tensile and shear tests performed under a plane stress state using the bound-
ary conditions described in Fig. 5. Symmetry boundary conditions are considered and a displacement e is imposed on
the right edge of the square in the case of the tensile test on the one hand, on the other hand anti-symmetry boundary
conditions are considered and a displacement e is imposed on top and right edges of the plate in the case of the shear test.
The main issue of such an approach is that on the contrary of FE calculations for which local properties at the scale of the
element are identical to the macroscopic properties in the case of a homogeneous material, microscopic properties of the
beam element (Eµ, rµ) can only be correlated to EYM and ESM as previously done in previous works [7, 8].

Figure 6. Influence of the microscopic parameters Eµ and rµ on the EYM (a) and the Poisson’s
ratio (b)

The calibration process consists in determining the relation between microscopic and macroscopic parameters via a full
range of investigated configurations so that the evolution of microscopic properties allows us to choose the desired macro-
scopic ones. In the present work, we consider a microscopic Young’s modulus in the interval [2GPa, 1000GPa], and a rµ
parameter in the interval [0.1, 0.9]. Evolution curves are plotted in Figures 6-a and -b. We notice that the macroscopic
Poisson’s ratio νM does not depend on Eµ but quadractically depends on the dimensionless radius rµ. EYM EM linearly



depends on rµ and quadratically depends on Eµ. These conclusions are in good agreement with those obtained by André
et al. [7] in the context of spheres in 3D.

Case of a heterogeneous continuous medium with a single inclusion

The section is dedicated to the investigation of the thermoelastic behavior of a heterogeneous continuous medium with a
single inclusion. For this purpose a 2D square-shaped representative pattern of the composite material is generated and
numerical approaches described in the previous section are considered. The representative pattern consists of a centred
circular inclusion which represents the unidirectional fibre and has a radius equal to 0.25 times the length L (Fig. 7). The
square pattern is discretized by the same random granular packing constituted of 5000 polydisperse particles than the
previous one used for a homogeneous material.

Figure 7. Single inclusion problem: continuous (a) and discrete (b) models

Thermal properties

Our objective is to assess the ETC λe of the heterogeneous continuous medium with a single inclusion via the proposed
DEM-based approach. Both inclusion and matrix phases are supposed isotropic with thermal conductivities respectively
denoted by λi and λm where superscripts i and m designate the inclusion and matrix phase respectively. λm is set to 30
W/(m.K) and λi is varied according to the expected contrast of properties cλ = λi

λm which can be chosen greater or lower
than 1. In other words, the inclusion can be considered more conductive or more insulative than the matrix phase. The
specific heat capacity is supposed set to 900 J/(K.kg) for both phases but this is of little importance since we are only
interested by results at stationary state in the present section. The evaluation of the ETC is performed considering the
methodology described in subsection a). Results are compared to two numerical homogenization techniques. The first
technique is the FFT-based method which consists in solving the Lippmann-Schwinger’s equation in Fourier space using
an iterative algorithm [11, 12]. In the present work, calculations are performed using the Eyre-Milton scheme and a
digitized map of the representative pattern consisted of 1048576 (10242) pixels [13]. The second one is the double-scale
homogenization method (2SFEM) [14]. This approach is based on variational considerations and uses the FEM with
periodic boundary conditions. Results are also compared with the classical FEM for which thermal conditions are the
same as those considered in the DEM-based approach, and a theoretical estimate, namely the Hashin’s model (HM) [15].
For information purposes, all FEM calculations are carried out using a structured mesh composed of 980000 (2×7002)
3-node triangular elements.

Table 2. Influence of the contrast on the normalized ETC for several numerical and theoret-
ical approaches

cλ 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100

λ∗ DEM 0.672 0.678 0.694 0.722 0.768 0.877 1.000 1.139 1.300 1.382 1.432 1.466 1.478
FEM 0.677 0.682 0.698 0.723 0.769 0.878 1.000 1.140 1.302 1.384 1.433 1.467 1.478
2SFEM 0.676 0.682 0.698 0.723 0.768 0.877 1.000 1.140 1.301 1.383 1.433 1.466 1.477
FFT 0.677 0.682 0.698 0.723 0.768 0.877 1.000 1.140 1.302 1.384 1.433 1.467 1.472
HM 0.677 0.683 0.698 0.723 0.769 0.877 1.000 1.140 1.301 1.383 1.432 1.465 1.477



Calculations are carried out for a range of cλ from 0.01 to 100. Thus, two main configurations are considered, namely
the case of an inclusion more insulative than the matrix (cλ < 1) and the reverse case for which the inclusion is more
conductive than the matrix (cλ > 1). Table 2 illustrates the influence of the contrast on the assessed normalized ETC (λ∗)
which is obtained by dividing the ETC λe by the thermal conductivity of the matrix. Results are compared with those
obtained using other numerical and theoretical approaches. Whatever the contrast, less or more than 1, predictions given
by the DEM are very close to other assessments with a maximum relative difference of 0.6%. This highlights the ability
of the DEM to estimate the ETC of a heterogeneous continuous medium with a single inclusion.

Elastic properties

Tensile and shear tests are carried out using the boundary conditions already seen in Fig. 5 in order to assess EYM and
ESM. The macroscopic Young’s modulus Em of the matrix is set to 65 GPa. Different values of macroscopic Young’s
modulus Ei of the inclusion are considered so that the contrast of properties cr =

Ei

Em varied from 0.01 to 100. Poisson’s
ratios of both phases are set to 0.3 and we suppose a plane stress state. DEM-based results are compared to those ob-
tained using the same numerical approaches than previously seen for evaluating the ETC, namely the FFT-based method,
the double-scale homogenization method (2SFEM), the classical FEM for which boundary conditions are identical to
those considered in the DEM approach. Comparisons are also performed with the theoretical estimate given by Mori and
Tanaka (MT) [16]. For information purposes, all FE and FFT-based calculations are carried out considering the same
discretizations than previously used for evaluating the ETC.

Figure 8. Non-dimensional Young’s modulus as a function of the contrast of properties, case
cr ≤ 1 (a) case cr ≥ 1 (b)

Two configurations are investigated. The first problem corresponds to the case of an inclusion less stiff than the matrix
with a Young’s modulus less than that of the matrix. The second one corresponds to the case of an inclusion stiffer than the
matrix with a Young’s modulus higher than that of the matrix. Fig. 8 illustrates the influence of the contrast of properties
cr on the non-dimensional Young’s modulus which is obtained by dividing E by Em. Results exhibit a good agreement
between DEM, FEM, numerical homogenization techniques and the theoretical estimate whatever cr. For example, for a
contrast of 100, the relative differences with respect to the value given by the FEM is 5.39% for the Young’s moduli in
the case where cr < 1, and the relative difference is only 0.06% when cr > 1. Globally, relative differences do not exceed
5% whatever the considered contrast of properties. This highlights the ability of the DEM approach to estimate elastic
properties of a heterogeneous continuous medium with a single inclusion.

Conclusion

The present paper dealt with a DEM-based approach for characterizing the thermoelastic behavior of composite materials.
A focus was done on a 2D plate structure with a single inclusion embedded in a matrix. Comparisons with other numerical
and theoretical approaches highlight the suitability of the proposed approach to estimate ETC, EYM and ESM. These
results are encouraging and pave the way to interesting prospects. In a next future, we expect to extend the present approach
to model the thermomechanical behavior of complex heterogeneous media where fracture phenomena and interfacial
effects arise.
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[7] André, D., Iordanoff, I., Charles, J. L. and Néauport, J. (2012) Discrete element method to simulate continuous
material by using the cohesive beam model. Computer Methods in Applied Mechanics and Engineering 213-216,
113-125.
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