A fast approximate hierarchical solver for dense linear systems

Pieter Coulier^{1,2}, Hadi Pouransari² and Eric Darve^{2,3}

¹KU Leuven, Department of Civil Engineering, Belgium
²Stanford University, Department of Mechanical Engineering, USA
³Stanford University, Institute for Computational and Mathematical Engineering, USA

{pcoulier,hadip,darve}@stanford.edu

Abstract

In this talk, we present the inverse fast multipole method as an approximate fast direct solver for dense linear systems, with a computational cost scaling linearly with the problem size [1]. The method can be used as a stand-alone direct solver or as a preconditioner in an iterative method. We use low-rank approximations to represent well-separated interactions; this is done in a multi-level fashion. Applications related to mesh deformation, Stokes flow, and acoustics are discussed.

Keywords: Fast direct solver; preconditioner; \mathcal{H}^2 -matrices; low-rank compression.

References

[1] P. Coulier, H. Pouransari, and E. Darve The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems. *arXiv* (2015), 1508.01835.