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Abstract 

A multi-model global-local approach to study free edge effects in laminated composites 
subjected to uniaxial in-plane loads is presented in this paper. Mixed layer-wise (LW) finite 
element (FE) model is used in critical free edge zone. Remaining part of plate is modelled by 
using higher order equivalent single layer (ESL) theory. A transition element is developed to 
ensure a compatibility between differently modelled subdomains. This combined model 
possesses traits of both ESL and LW mixed models. Higher order ESL predicts global 
parameters efficiently, on the other hand, mixed LW model captures the interlaminar stresses 
at local zones. Mixed LW model includes the transverse stresses as nodal degrees of freedom 
(DOF) ensuring continuity of the transverse stresses over layer interfaces without using any 
additional stress functions. Both, ESL and LW mixed models are developed by using three 
dimensional (3D) elasticity relationships and principle of minimum potential energy. The 
present combined model is a good blend of computational efficiency and accuracy in prediction 
of local transverse stresses. Plates with different stacking sequences are investigated for free 
edge stresses developed in the transverse direction under uniaxial in-plane load conditions.  

Key Words: Mixed Finite Element; Free edge stresses; Higher order theory; Principle of 

minimum potential energy; transition element; global-local analysis. 

1.0 Introduction 

Laminated composites having several layers with uni-directional fibres are utilized as structural 

members for variety of applications. Advantageously, these exhibit good strength, stiffness, 

environmental resistance and are light in weight as compared to homogeneous materials. 

Depending on configuration of loading, strength parameters can be altered by using appropriate 

stacking sequence of layers. Evaluation of laminate response to applied load becomes complex 

due to heterogeneous properties of different layers in a laminate. 

 

Apart from elasticity approach, various displacement based and hybrid models have been 

proposed for analysis of laminates. These models are implemented using analytical or FE 

formulations. A three-dimensional (3D) elasticity solution by Pipes and Pagano (1970) [1] has 

shown that in a laminate under simple uniaxial loading there is a "boundary layer" region along 

the free edges where a three-dimensional state of stress exists, and that the boundary layer 

thickness is roughly equal to laminate thickness. Wang and Crossman (1977) [2] presented a 

displacement based FE model to study edge effects for symmetrically stacked laminates. It has 

been shown that steep stress gradients of the transverse normal and shear stresses prevail near 

free edges. These high magnitudes of multi-axial stresses in vicinity of free edges may lead to 

delamination of a laminate. A state of plane stress is seen to prevail towards the interior of 

plate. Moreover, delamination failure is most common mode of failure in laminated 

composites, which initiates at geometrical discontinuities like free edges, notches and holes. 



Evidently, a correct evaluation of complete 3D state of stress at free edges is important for 

assessment of strength and durability of a laminate under a certain load configuration. Effect 

of stacking sequence on laminate strength was investigated by Pagano and Pipes (1971) [3].  

Rybicki (1971) [4], Wu and Hsu (1993) [5], Flesher and Herakovich (2006) [6] presented 

different approaches for evaluation of the transverse stresses and prediction of onset of 

delamination. Shi and Chen (1992) [7]presented a mixed FE model by using a hybrid stress 

element at free edges and conventional displacement based FE’s at other locations. Chorng-

Fuh and Horng-Shian (1993) [8] also presented a mixed FE model to predict the transverse 

stresses developed at free edges of a laminate subjected to uniform in-plane strain 

 

A displacement model depicting the kinematics of a particle in a laminate must encompass 

rigid body, extension, bending and warping modes of deformation to correctly predict response 

in a realistic manner. Many ESL models are seen in literature for analysis of laminated 

composites. Kant and Swaminathan (2002) [9] presented a comprehensive ESL higher order 

theory which incorporates all these deformation modes and predicts all global responses 

effectively. Laminate is considered as a single smeared plate with the properties averaged over 

thickness. However, evaluation of interlaminar transverse stresses is done by using 3D stress 

equilibrium equations. On the other hand, a better mathematical representation of laminate 

behaviour is portrayed by LW models which incorporate discrete individual properties of all 

layers in a laminate. Displacement based LW models also need either some additional stress 

function or integration of stress equilibrium equations to estimate magnitudes and through 

thickness variation of the transverse stresses in a laminate. Ramtekkar, Desai (2002) [10] 

presented a FE mixed LW formulation having the transverse stresses invoked as nodal DOF 

along with displacements. Continuity of the transverse stresses over layer interfaces is 

inherently satisfied. ESL’s demand less computational effort as compared to LW models as 

they map the domain involving less DOF. Computational efficiency is achieved by using ESL 

but accuracy of solution is sacrificed. LW models exhibit accuracy of solution but demand high 

computational effort. Application of LW models on a laminate domain involve high DOF in 

the solution and face restrictions due to limitation of computational resources in cases where 

fine discretization of domain becomes essential for accuracy of solution. 

 

In this paper a multi-model meshing methodology is presented which advantageously uses both 

higher order ESL and mixed LW models simultaneously over the domain of a laminate. A 

transition element is developed to establish compatibility between two models. Presence of 

ESL in non-critical zones in a laminate ensures accurate assessment of global parameters and 

reduction of computational cost. At the same time, mixed LW model used in critical free edge 

region accurately predicts the transverse stresses. Efficacy of present multi-model approach is 

illustrated by using it on examples of laminates subjected to uniaxial in-plane loading.  

2.0 Theoretical formulation 

Three models have been formulated for analysis of laminated composite plates consisting of 

several orthotropic laminae. 

(a) Model 1: This model adopts a cubic displacement field in the thickness direction for 

displacements (U,V,W)  and has 12 DOF. The theory has been identified as HOST12. 

The model is based on the three dimensional state of stresses and strains. 

(b) Model  2: In this model, mixed finite element LWT, which has three displacements  

(U,V,W) and the transverse stresses ( , ,xz yz z   )  as the nodal DOF, is used. The theory 



is based on elasticity relationships. Therefore, introduction of any additional 

parameters/stress variation functions are advantageously avoided. 

(c) Model 3: This model is based on a global-local finite element procedure to take 

advantage of computational efficiency of the higher order ESL theory and accuracy of 

the 3D mixed model. 

2.1 Model 1 : Development of ESL theory based model (HOST 12) 

Displacements in three principal directions of the laminate as a fully cubic function of the 

thickness co-ordinate are 

),(),(),(),(),,(

),(),(),(),(),,(

),(),(),(),(),,(

*3*

0

2

0

*3*

0

2

0

*3*

0

2

0

yxzyxwzyxzyxwzyxw

yxzyxvzyxzyxvzyxv

yxzyxuzyxzyxuzyxu

zz

yy

xx













    (1)

 

The above displacement field eliminates any requirement of shear correction factor and 

chances of shear locking. Here 0 0 0,  and u v w
 
are the deformations in the x,y,z (laminate co-

ordinate) directions respectively at the mid-plane. ,  and x y z   , on the other hand, are the 

rotations at mid-plane about the principal directions of laminate. 
* * * * * *

0 0 0, , , ,  and x y zu v w    are higher 

order terms stemming from the Taylor’s series. By using material property, the strain 

displacement relationship and the principle of minimum potential energy, the stiffness matrix 

for laminate is developed. By using shape functions similar to the stiffness evaluation, the mass 

matrix is also developed. Detailed formulation can be seen in the work presented by Kant and 

Swaminathan (2002) [9]. A nine node Lagrangian isoparametric element has been used to 

discretize a laminate.  

 

Numerical integration is performed by employing 3 X 3 Gauss quadrature rule for the 

extension, bending, mass component, whereas,  2 X 2 Gauss rule for the shear part. 

2.2  Model 2: Development of mixed LW model 

An 18-node three-dimensional element based on mixed formulation is used by considering 

displacement fields u(x,y,z), v(x,y,z) and w(x,y,z) having quadratic variation along the plane of 

plate and cubic variation in the transverse direction. The cubic variation of field has been 

adopted to invoke the transverse stresses as the nodal parameters in addition to the nodal 

deformations. The displacement field is expressed as 

3 3 3 3 3 3 3 3
2 3

k i j 0ijk i j 1ijk i j 2ijk i j 3ijk
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where 
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   2
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        ,     = y/Ly 

k = 1, 2, 3 and u1 = u;     u2 = v;      u3 = w; 

Further, amijk (m = 0, 1, 2, 3; i, j, k = 1, 2, 3) are the generalized coordinates. 

 

Variation of displacement fields has been assumed to be cubic through the thickness of element, 

although there are only two nodes along ‘z’ axis of an element. Derivative of displacement with 



respect to the thickness coordinate has also been included in the displacement field. Such a 

variation is required for invoking transverse stress components z , xz  and yz  as nodal DOF 

in the present formulation. Further, it also ensures quadratic variation of the transverse stresses 

through the thickness of an element.  

 

By making use of the elasticity relationship and introducing derivative of displacements, 

displacement field uk(x,y,z)) in Eq. (2) becomes 
18

1

( , , ) ( )k i j q kn p kn

n

u x y z g h f u f u


       (3) 

Here, i = 1, 2, 3 for the nodes with  = -1,  = 0 and  = 1, respectively; 

j = 1, 2, 3 for the nodes with  = -1,  = 0 and  = 1, respectively; 

q =1,2 and p =3,4 for the nodes with  =-1 and  =1, respectively for node numbers 1 to 18 

and 

3 3 2 3 2 3

1 2 3 4

1 1
(2 3 ) (2 3 ); (1 ) ( 1 )

4 4 4 4

z zL L
f ; f f ;  f                        .

 

Here, f3 and f4 correspond to derivative of displacements with respect to thickness co-ordinate 

whereas f1 and f2 correspond to displacement DOF , knu  (k = 1, 2, 3 and n =1,2,3,...18) are 

nodal displacement variables, whereas knu  ( knu

z





) contains the nodal transverse stress 

variables. Principle of minimum potential energy is used to develop the element property 

matrix. Detailed formulation can be seen in the work presented by Ramtekkar, Desai (2002) 

[10]. 

 

Numerical integration of system matrices has been performed by using Gauss quadrature rule 

with 3 X 3 integration scheme in plane of plate and a 5 X 5 integration scheme in the thickness 

direction. 

2.3  Model 3 - Development of transition element between 2D ESL (HOST12) and 3D mixed 

LW model 

Compatibility between two differently modelled sub-domains (by using Model 1 and Model 2) 

is enforced by degenerating a continuum 3D element through kinematic constraints compatible 

with deformations predicted by 2D element. 

 

A 3D-to-2D transition element has one or two faces of a 3D element that are kinematically 

restrained to enforce compatibility with adjacent 2D elements. Such a face is denoted as a 

transition face in the sequel. The 3D element on the transition face needs to be conditioned for 

compatibility with DOF of the ESL (HOST12) element to ensure continuity of the combined 

model. Such an element acts as a transition element to connect two independently modelled 

sub-domains. Transition is achieved by placing a stack of such transition elements used in 

different layers of a laminate at the transition face. 



 
Fig. 1 (a) Configuration of connection between 3D elements and HOST12 elements, 

and  (b) Illustration of degenerated face of the 3D element 

A pair of incompatible mesh formulations is shown in Fig. 1(a) wherein a nine node ESL 

element with twelve DOF per node (node numbers denoted with a prime) is connected to a 

stack of 3D mixed elements with six DOF per node (three translations and three transverse 

stresses). Fig. 1(b) shows diagrammatic representation of the transition element with the 

degenerated transition face. Differently modelled meshes meeting at the transition face 

represent the same laminate configuration and thickness. 

 
(a)     (b) 

Fig. 2 An indicative impression of unidirectional transition (a) before implementation of 

restraint; and (b) after implementation of restraint 

 

Kinematics of any point at a distance ‘dkj’ from the reference plane of the laminate on the 

transition face is completely described by displacement field for the ESL. Because 2D elements 

and stack of 3D elements represent the same laminate, motion of the corner 3D node (node 1) 

(refer Fig. 1(a)) is entirely prescribed by the three translations, three rotations and the higher 

order terms of its corresponding ESL node (node 7’). Consequently, the DOF associated with 

nodes 1,2,3,10,11 and 12 are followers to the DOF associated with ESL leader nodes 7’, 8’ and 

9’, and hence must be restrained. A transition element is shown in Fig.1(b), where kinematic 

restraint is imposed on the hatched surface. Three nodes of the ESL on the transition face form 

3D elements' transition edge. This edge represents transition face of 3D element stack. An 

indicative impression of the change in configuration of the 3D element on imposition of the 

restraint is shown in Fig. 2. 
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By using displacement field of HOST12 in Eq. (1), kinematics  
3

ˆ
D

k
q  of any ‘kth’ node of 3D 

element on the transition face and corresponding to the ESL leader ‘jth’ node can be completely 

prescribed as 
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or 
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By developing the restraint sub-matrices 
kj

R for all pairs of 2D and 3D nodes, the 

transformation matrix [R] for the entire element can be formulated by appropriately populating 

sub-matrices  
kj

R  corresponding to every pair. Finite element stiffness property, mass/inertia 

property matrices and internal force/influence vector for the transition element are obtained by 

matrix transformations using the constructed corresponding matrices of 3D element and 

associated transformation matrix as follows, 
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The transformation in Eq. (6) degenerates the transition face of the 3D element which becomes 

follower to the corresponding HOST12 leader nodes. All elements in the interior of the local 

transition face are 18 node elements with all nodes modelled using mixed formulation. Stress 

DOF at the 3D nodes on the transition face are condensed prior to imposition of the restraint. 

By considering stiffness and mass matrices of the ESL elements, transition elements and the 

interior LW mixed elements, the global matrices are obtained in the following form after 

assembly. 
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Here  

 
     ,  and 

G G G
K M F  are the global stiffness property matrix, inertia property matrix and 

nodal influence vector, respectively; 

 ,   and 
i i i

e e eK M F       
are the element property matrix, inertia property matrix and the element 

influence vector of ith element, respectively, formed by using mixed LWT; 



 ,   and j j j

e e eTr Tr Tr
K M F        are the element property matrix, inertia property matrix and 

element influence vector of jth transition element, respectively; and 

 ,   and l l l

e e eK M F        are the element stiffness matrix, mass matrix and element nodal load 

vector of lth ESL element, respectively. 

m, n and k in Eq. (7) represent number of mixed LW, transition and ESL elements. 

 

The displacement vector  ˆ
Tr

q of a transition element is composed of DOF of ESL nodes on 

the transition edge, and DOF of 3D nodes on the other faces. 

 

 

The transition element developed by the application of the restraints consists of 108 DOF and 

15 nodes for unidirectional transition and a corner element with two adjacent transition edges 

has 13 nodes and 108 DOF. Such a corner element is developed by applying the kinematic 

restraint on two adjacent faces. 

3.0 Numerical examples  

To study 3D state of stresses in the free edge regions, a laminate is modelled by using 3D mixed 

LW elements at free edge and higher order ESL in remaining part to reduce computational 

effort. Both models are implemented simultaneously and compatibility between subdomains is 

established by introducing transition elements. Examples of symmetrical cross ply laminates 

under in-plane unidirectional strain and transverse doubly sinusoidal load are considered for 

illustration. Plate under transverse load is considered to be simply supported on all four edges. 

Substantial reduction in computational effort is achieved as compared to a complete LW mixed 

FE solution.  

3.1 Example 1: Free edge stress analysis of a symmetric cross ply laminate 

A symmetric (0/90/90/0) cross ply laminate is considered for free edge stress analysis under 

action of uniform uniaxial in-plane strain. Width of laminate ‘2b’ is considered as ‘4h’ and 

length of laminate ‘l’ is taken as ‘10h’, where ‘h’ is thickness of laminate. Material of laminae 

is assumed to possess following properties. 

E1 = 138.00GPa; E2 = E3 = 9.66 GPa; G12 = G13 = 5.52 GPa; 

G23 = 4.14 GPa; 12= 13 = 23= 0.21; 

 
Fig 3  Typical laminate and coordinate axes 
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Uniform in-plane strain 6( 1 10 )x X   is introduced along the length of laminate. 

Implementation of this novel multi-model finite element mesh is done on a quarter part of the 

laminate. Advantage of symmetry in configuration is taken in implementation of the multi-

model FE scheme for a finer discretization. A typical laminate with coordinate axes is shown 

in Fig 3. Laminate is restrained against deformations along X axis at X=l/2. A uniform strain 

is introduced at X=0.  

 

Zone in vicinity of X=0 over entire half width is modelled using a stack of 3D mixed LW 

elements and in remaining part, higher order ESL (HOST12) is used. Length of local zone (3D 

mixed LW zone) is taken equal to thickness of laminate. This amounts to about 10% of entire 

domain of plate. Laminate is discretized using 7 elements along the length and 8 elements along 

width. A strip of 1 element at free edge along the width is modelled by 3D mixed LW elements. 

Each layer of laminate is subdivided in 4 sub-layers to accommodate 16 LW mixed 3D 

elements over the thickness at local free zone.  Hence, a total of 176 elements are employed 

over the domain of laminate. Composition of these elements comprises of 56 ESL and 128 3D 

mixed LW elements. 

 

Variation of the transverse normal stress at free edge ( X=0), along the half width of plate is 

obtained by present multi-model approach. Variation of the transverse normal stress at mid-

plane (90-90 interface) and at (90-0) interface are presented in Fig 4 and Fig 5, respectively. 

Variation of the transverse shear stress ( )yz  at (90-0) interface along the width at free edge is 

shown in Fig 6. 

                             
Fig 4 Width wise variation of  

z on free edge at X=0 at mid-

plane 

  Fig 5  Width wise variation of yz  

at free edge at X=0 at mid-plane 

 

It is observed that the transverse stresses at the free edge are correctly estimated by the present 

multi-model approach. Steep stress gradient is predicted at free edge. At the same time, a 

substantial reduction in computational effort is also achieved. Saving in computational effort 

as compared to complete 3D mixed LW model can be appreciated. For a complete 3D solution 

with same mesh discretization, a total of 896 elements would have been required. Reduction in 

number of elements required to map the domain leads to reduction of DOF and therefore, the 

computational effort. 

3.2  Example 2: Complete stress analysis of a square simply supported sandwich plate under 

bi-directional sinusoidal transverse load (Core=0.8h) 

A (0o/core/0o) square sandwich plate (l=2b) under bi-directional sinusoidal transverse load is 

considered for in-plane as well as inter-laminar stresses. The plate is simply supported on all 



four edges. The thickness of each face sheet is one tenth of total thickness of sandwich plate. 

Determination of in-plane and the transverse stresses is accomplished using present combined 

model. To capture ( )yz , a stack of 3D mixed LW elements are placed at and in vicinity of 

( ,0)
2

l
 and remaining laminate is modelled using HOST12 elements. To capture ( )xz , a stack 

of 3D mixed LW elements are placed at and in vicinity of (0, )b  and remaining laminate is 

modelled using HOST12 elements. For obtaining ( )z , a stack of 3D mixed LW elements are 

placed at and in vicinity of ( , )
2

l
b  and remaining laminate is modelled using HOST12 elements. 

Material properties and normalization factors used for the analysis are mentioned alongside 

Table 1. Results for aspect ratios S=l/h= 2, 4, 10, and 20 have been compared in Table 1 with 

elasticity solution given by Pagano (1970) [11], FE solution by Ramtekkar, Desai (2003) [12] 

as well as the analytical and finite element solutions presented by various authors. Through 

thickness variations of the normalized transverse shear stress components and transverse 

normal stress for the plate with aspect ratio S = 4 have been presented in Fig. 7(a-c).  Results 

are in close proximity of exact elasticity solution obtained by Pagano (1970) [11], FE solution 

by Ramtekkar, Desai (2003) [12]. The agreement of the results with the elasticity solution and 

3D fully mixed formulation clearly suggests that such problems can be analyzed with good 

accuracy by using the present formulation. A substantial reduction in DOF and effort as 

compared to complete mixed LW solution is observed. 

 
(a)                                                                     (b) 

 
                           (c) 

Fig 7 Through thickness variation of a) yz ,  b) xz   and   c) z  

 



 

Table 1 Maximum stresses in square sandwich plate under bi-directional sinusoidal transverse load (Core=0.8h) 

1 2 3 12 13 23 12 13 23

1 2 3 12 13 23 12 31 32

( : 172.4 , 6.89 , 3.45 , 1.378 , 0.25;

 : 0.276 , 3.45 , 0.1104 , 0.414 , 0.25)

FaceSheet E GPa E E GPa G G GPa G GPa

Core E E GPa E GPa G GPa G G GPa
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S Source ( , , )
2 2 2

X

a b h
   ( , , )

2 2 2
Y

a b h
   (0, ,0)

2
XZ

b
  ( ,0,0)

2
YZ

a
  (0,0, )

2
XY

h
   

2 
i. Pagano (1970b) [11] 3.278 -2.653 0.452 0.392 0.185 0.142 -0.240 0.234 

ii. Present 3.1225 -2.516 0.468 -0.417 0.183 0.136 -0.2328 0.2295 

4 

i. Pagano (1970b) [11] 1.556 -1.512 0.259 -0.253 0.239 0.107 -0.144 0.148 

ii. Present 1.501 -1.460 0.267 -0.263 0.2388 0.1055 -0.1424 0.1474 

iii. Pandya and Kant (1988) [13] 1.523 - 0.241 - 0.275 - -0.142 - 

iv. Reddy and Chao (1981) [14] 0.865 - 0.151 - 0.099 - -0.088 - 

v. Wu and Lin (1993) [15] 1.548 - 0.241 - 0.249 - -0.134 - 

vi. Ramtekkar, Desai (2003) [12] 1.570 -1.524 0.260 -0.255 0.240 0.108 -0.145 0.149 

10 

i. Pagano (1970b) [11] 1.153 -1.152 0.110 -0.110 0.300 0.053 -0.071 0.072 

ii. Present 1.146 -1.145 0.113 -0.113 0.306 0.058 -.0707 0.0718 

iii. Pandya and Kant (1988) [13] 1.166 - 0.105 - 0.340 - -0.069 - 

iv. Reddy and Chao (1981) [14] 1.015 - 0.077 - 0.111 - -0.053 - 

v. Wu and Lin (1993) [15] 1.210 - 0.111 - 0.324 - -0.071 - 

vi. Ramtekkar, Desai (2003) [12] 1.159 -1.158 0.111 -0.110 0.303 0.055 -0.071 0.072 

20 

i. Pagano (1970b) [11] 1.110 0.070 0.317 0.036 0.051 

ii. Present 1.115 0.0729 0.335 0.048 -0.0512 0.0515 

iii. Present (8X8)/(2X2X16) 1.106 0.0713 0.3216 0.0393 -0.0506 0.0503 

iv. Wu and Lin (1993) [15] 1.173 0.072 0.353 - 0.052 

v. Ramtekkar, Desai (2003) [12] 1.115 0.070 0.317 0.036 0.051 



4.0 Conclusions  

A multi-model FE approach is developed for stress analysis of composite laminates. An unique 

transition element is developed for appropriate compatibility between higher order ESL and 3D 

mixed LW formulation. The present multi-model approach has been tested over a laminate 

under uniaxial strain. Results for a transversely loaded simply supported sandwich are also 

presented. Results obtained through This approach enables mapping of the domain of a laminate 

with reduced numbers of DOF as compared to any 3D solution. At the same time, accuracy in 

prediction of inter-laminar stresses at critical zones is also achieved. Reduction in number of 

DOF renders the methodology a computationally economical. 
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