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Abstract 

In this paper, a new single interface integral equation method is presented for solving 
transient heat conduction problems consisting of multi-medium materials with variable 
thermal properties. Firstly, adopting the fundamental solution for the Laplace equation, the 
boundary-domain integral equation for transient heat conduction in single medium is 
established. Then from the established integral equation, a new single interface integral 
equation is derived for transient heat conduction in general multi-medium functionally graded 
materials, by making use of the variation feature of the material properties. The derived 
formulation, which makes up for the lack of boundary integral equation in solving 
multi-medium problems, has the feature that only a single boundary integral equation is used 
to solve multi-medium transient heat conduction problems. Compared with conventional 
multi-domain boundary element method, the newly proposed method is more efficient in data 
preparing, program coding and computational cost. Based on the implicit backward 
differentiation scheme, an unconditionally stable and non-oscillatory time marching solution 
scheme is developed for solving the time-dependent system of differential equations. 
Numerical examples are given to verify the correctness of the presented method. 

Keywords: Transient heat conduction, Multi-medium problems, Non-homogeneous problem, 
Interface integral equation. 

1. Introduction 
With the advantages of semi-analytical feature and dimensional reduction characteristic, the 
boundary element method (BEM) has been successfully applied to solve transient heat 
conduction problems [1-4]. According to the differences of solution procedures, most of the 
existing approaches can be classified into two broad categories: the transformed space 
approach ( Rizzo and Shippy [5]; Sutradhar et al.[6]; Sutradhar and Paulino [7]; Simoes[8]; 
Guo et al. [9]), and the time domain approach (Wrobel and Brebbia [10]; Ochiai et al.[11]; 
Tanaka et al.[12]; Yang and Gao[13]; Al-Jawary el al. [14]; Yu et al. [15]). In the transformed 
space approach, the time dependent derivative is removed by applying an algebraic transform 
variable, and the system of equations is solved in the transform space, then inverse transform 
is employed to reconstitute the solution in time domain. The other kind is the time domain 
approach, by which the solutions are found directly in the time domain. One implementation 



of the time domain approach is the use of time-dependent fundamental solution [10, 11], that 
can result in a pure boundary integral equation algorithm. However, numerically evaluating 
the boundary integrals requires both space and time discretization. More details about 
time-dependent fundamental solution approaches can be found in the works of Wrobel and 
Brebbia [10] and Ochiai and Sladek [11]. Another implementation of the time domain 
approach is to employ the fundamental solution for the Laplace equation, and transform the 
volume integrals associated with time dependent derivative into equivalent boundary integrals. 
Among the transforming techniques, the dual reciprocity method (DRM) [16, 17], Multiple 
reciprocity method (MRM) [18], and radial integration method (RIM) [19 ] are most widely 
used.  
 
Transient heat conduction BEM has been broadened to a wide range of engineering problems, 
including non-homogeneous [21], anisotropic [20], and non-linear problems [33]. But most 
studies mainly focus on single medium. However, most engineering problems involve objects 
composed of different materials. Therefore, it is important to develop the multi-medium BEM. 
The conventional widely used technique for solving multi-medium problems is the 
multi-domain boundary element method (MDBEM) [25-29]. The basic idea of this method is 
that the whole domain of concern is broken up into a number of separate sub-domains, then a 
boundary integral equation is written for each sub-domain, and the final system of equations 
is formed by assembling all contributions of the discretized integral equations for each 
sub-domain based on the compatibility condition and equilibrium relationship. In the transient 
heat conduction field, Erhart et al. [31] developed a parallel domain decomposition Laplace 
transform BEM algorithm for solving the large-scale transient heat conduction problems. 
Recently, Gao et al. [25, 32] proposed a three-step multi-domain BEM for solving 
multi-medium non-homogeneous problems. 
 
Although MDBEM is flexible in solving multi-medium problems, it has disadvantages in data 
preparation and computational time, since twice the element information over the same 
interface needs to be defined for the adjacent two sub-domains, and twice integrations need to 
be carried out over interface elements. Moreover, the variable condensation and assembling 
processes require a higher coding skill to develop a universal program, which heavily 
influences the computational efficiency. Tracing the issue to its source, the existing boundary 
integral equations were established on a single medium assumption, therefore it is awkward to 
solve multi-medium problems through using MDBEM, which involves tedious domain 
decomposing and assembling processes. 
 
Recently, Gao and his coworkers proposed a single integral equation method, named interface 
integral BEM (IIBEM), for solving multi-medium problems [34-37]. Through a degeneration 
method from domain to interface integrals, the integral equation for solving single medium 
problems can be extended to interface integral equation capable of solving multi-medium 
steady heat conduction [34], elasticity [35, 36] and elastoplasticity [37] problems. Comparing 
with the conventional boundary integral equation, an additional interface integral appears in 
the basic integral equation, embodying the difference of material properties between two 
adjacent media. The derived formulations make up for the lack of a boundary integral 
equation in solving multi-medium problems. Compared with MDBEM, the derived integral 



equation is very simple in form and only requires integration once over the interface elements. 
Attributed to the feature of being single integral equation, it is easy to adopt the fast 
multi-pole method to solve large-scale problems [41]. 
 
In this paper, a new single integral equation method is developed for solving general 
multi-medium transient heat conduction problems. Firstly, the boundary-domain integral 
equation for single medium non-homogeneous transient heat conduction is established. Then 
from the established integral equation, the interface integral equation for multi-medium 
transient heat conduction problems is derived, by a degeneration technique from a domain 
integral to an interface integral. The new formulation allows the thermal material properties 
(i.e., thermal conductivity, specific heat and mass density) varying spatially within each 
medium, and jump across the interfaces between every two adjacent different media. For the 
first time, a single integral equation method is employed to solve multi-medium transient heat 
conduction problems with variable material properties. 
 
To solve the time-dependent system of differential equations, the finite difference method 
(FDM) is used in the discretization of time to approximate the time evolution of temperatures. 
Based on an implicit backward differentiation scheme, an unconditionally stable and 
non-oscillatory time marching solution scheme is developed for solving the normal 
time-dependent system of equations, in which only temperature is involved as the 
time-dependent unknown variable. Numerical examples are given to verify the correctness of 
the presented method. The results show that, the presented formulations are robust in solving 
transient heat conduction in multi-medium functionally graded materials. 

2. Review of boundary-domain integral equation for transient heat conduction in single 
non-homogeneous medium 

In this paper, the thermal conductivity k, specific heat pc  and mass density ρ  are assumed 

to be functions of spatial coordinates x , i.e. )(xk , )(xpc , )(xρ . In this case, the governing 

equation for transient heat conduction problems can be written as follows: 
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where, ),( tT x  is the temperature at location x  at time t; )(xQ is the heat generation; 0t  is 

the initial time, and Ω  represents the computational domain. 

The initial condition is 

)()0,( 0 xx TT =                                   (2) 

where, )(0 xT  is the initial temperature. On the boundary, Dirichlet and Neumann boundary 

conditions are prescribed as follows: 
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where, ),( tq x  is the normal heat flux on the boundary Γ  of the computational domain Ω ; 

n  is the unit outward normal to Γ ; and Ω∂=ΓΓ=Γ )( qTC  , ∅=ΓΓ qT  . In Eqs. (3) and 

(4), ),( tT x , ),( tq x  are the given temperature and heat flux on the boundary, usually 

prescribed as given functions. 

 

Taking the fundamental solution for the Laplace equation as the weight function, applying the 
weighted residual technique to Eq.(1), and using the Gauss’ divergence theorem, the 
boundary-domain integral equation for solving single medium transient heat conduction 
problems can be established [13]: 
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where c =1 for internal points and 1/2 for smooth boundary points; y  represents the source 

point, and x  the field point; ),( yxG  is the fundamental solution for Laplace equation, 

nG ∂∂ /),( yx  and ),( yxV  are the derived kernels. These quantities can be expressed as 

follows 
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where, 1−= βα  ( 2=β  for 2D problems and 3 for 3D problems); r is the distance between 

source point y  and field point x ; ixr ∂∂ /  is the partial derivative of r with respect to 

coordinate ix ; in  is the i-th component of n. In Eqs. (7) and (8) and through the paper, the 

repeated subscripts represent summation. 
 
In Eq. (5) normalized temperature and thermal conductivity are utilized, by considering the 
product of temperature and thermal conductivity as the unknown variable [13, 38] 

)()()(~ xxx TkT =                                    (9) 
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Integral equation (5) is the boundary-domain integral equation for solving general single 
medium transient heat conduction problems. And through the radial integration method (RIM) 
transforming the involved domain integrals in Eq.(5) to the boundary, a pure boundary 
element algorithm without internal cells for single medium transient heat conduction can be 
developed [13]. 
 

From Eq.(10) we can see that the kernel function ),( yxV  involves the spatial derivative of 

the thermal conductivity ixk ∂∂ /)(x , which indicates that )(xk  should vary continuously 

without jump in the domain Ω . However, for a problem consisting of multiple media, the 
thermal conductivity jumps across the interfaces between two adjacent materials, the 

derivative ixk ∂∂ /)(x  will lead to an infinity. Therefore, Eq.(5) is not valid for multi-medium 

problems. However, the singular kernel is in fact integrable as shown in section 3. In section 3, 
we will deal with multi-medium problems in which the conductivity is not continuous across 
the interfaces of media. In this case, the domain integral involved in Eq. (5) is degenerated 
into an interface integral between two adjacent materials. 

3. Interface integral equation for multi-medium transient heat conduction 

For the sake of convenience and not losing generality, a problem consisting of two media 

characterized by conductivities )(1 xk  and )(2 xk  is considered as shown in Fig. 1, in which 

Γ  is the outer boundary of the problem, IΓ  is the interface between media )(1 xk  and 

)(2 xk , and n′  is the outward normal to IΓ . Since the thermal conductivity jumps across the 

interface IΓ , we separate a narrow domain 3Ω  around IΓ , which has a constant 

infinitesimal thickness h∆  along the interface (see Fig.1). 



 

Figure 1.  A narrow domain separated around interface of two media 

Referring to Fig. 1, the domain integral involving kernel ),( yxV  in Eq. (4) can be written as 

∫ ∫

∫∫∫

Ω Γ→∆

Ω→∆Ω+Ω→∆Ω






 Γ∆+Ω=






 Ω+





 Ω=Ω

I

dtTVhdtTV

dtTVdtTVdtTV

h

hh

      

       

),(~),(lim),(~),(

),(~),(lim),(~),(lim),(~),(

0

00 321

xyxxyx

xyxxyxxyx
(11) 

where Ω  represents the whole integration domain consisting of all media with an infinite 

narrow domain isolated out, and in a specific medium ),( yxV is determined by Eq.(8). From 

Eq.(8), we can see that the kernel ),( yxV  involved in the above equation is related to the 

gradient of the normalized conductivity ixk /)(~ x∂ . With the existence of a jump effect across 

the interface IΓ , the second integral item on the right hand side of Eq.(8) can be manipulated 

as follows [34, 37]: 
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Substituting Eq.(12) into Eq.(11), and the result into Eq.(5), the final temperature integral 
equation is derived as follows: 
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Eq.(13) is the established interface integral equation for solving multi-medium transient heat 
conduction problems. The time-dependent effect is embodied by the domain integral 

involving the time derivative of temperature ttT ∂∂ /),(~ x . The jump effect of thermal 

conductivities across the interfaces between every two adjacent media is embodied by the 



interface integral item carried out on IΓ ; The non-homogeneous effect of material properties 

is embodied by the domain integral item involving kernel ),( yxV . 

 
In numerical implementation, three types of points are introduced in discretization: outer 

boundary points on Γ , interface points on IΓ , and internal points in Ω . Eq.(13) is only 

suitable for the outer boundary points and internal points by setting 2/1=c  for smooth 

outer boundary and 1=c  for internal points, respectively. When the source point y  is 

located on the interface points, a similar integral equation can be obtained by letting IΓ→y  

[34]: 
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where, Iy  represents the source points located on the interface; Ic  is the free term 

coefficient, and for smooth interface, the expression of Ic  is 
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where, )(1
Ik y  and )(2

Ik y  are the thermal conductivities for the adjacent two different 

materials on the location of Iy . 

 
For the convenience, taking into account Eqs. (9) and (10), we can rewrite Eqs. (13) and (14) 
in an uniform form 
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where, 
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To avoid discretizing the domain Ω  into internal cells for evaluating domain integrals 
involved in the above integral equations using the conventional cell-integration technique [39], 
a robust transformation technique from domain integrals into equivalent boundary integrals is 
described in reference [19]. In the paper, the three domain integrals involved in Eq.(16) are 
transformed into equivalent boundary integrals by the radial integration method (RIM) [13]. 

4. Numerical implementation 

Eq. (16) is the boundary-interface-domain integral equation for solving multi-medium 
transient heat conduction problems with variable material properties, and by employing RIM 
transforming the involved domain integrals into equivalent boundary integrals, a pure 
boundary element method without internal cells can be developed. 

4.1  System of differential equations 

After discretizing the outer boundary Γ  and interface IΓ  into a series of boundary elements 

and collocating the source point y  through all boundary, interface, and internal nodes, we 

can form the system of differential equations for Eq.(16). Assuming that the BEM model 

involves bN  boundary nodes, cN  interface nodes, and iN  internal nodes, the total number 

of nodes is icbA NNNN ++= . The discrete form of integral equation (16) is as follows: 
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where, bcH , ccH  and icH  correspond to the coefficients of the interface integrals; bbH , 

cbH , ibH  and bbG , cbG  ibG  correspond to the outer boundary integrals; iiH  is 

diagonal matrix consisting of free term coefficients for internal points. V  and C  (both with 

dimensions of AA NN × ) correspond to the last two domain integrals in Eq.(16). And bf , cf  



and if are the domain integration results for heat sources. bT  and bq  are the temperatures 

and heat fluxes for the boundary nodes respectively, and  
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In which, 1T  and 2q  are the given temperatures on the Dirichlet boundaries and and heat 

fluxes on the Neumann boundaries, respectively. 
 
Rearrange the system of equations Eq.(19) by transposing columns of [H], [G] and [V] from 
one side to the other, gathering all unknowns to the left-hand side, then we can rewrite Eq.(19) 
as 
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In which, xT  consists of unknown temperatures on the Neumann boundary conditional nodes, 

the interface nodes and internal nodes. 
 
By writing the coefficient matrices A , C  in block form, we can reconstitute Eq.(21) as 
follows: 
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In Eq.(21), the unknown heat fluxes at nodes on Dirichlet boundary can be expressed by the 
unknown temperatures as following 
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Given that 1T  are known temperatures on Dirichlet boundary, which do not vary with time, 

therefore 0T =1
 , substituting back into Eq.(24) yields the following equation: 
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Substituting Eq.(25) back to Eq.(23), 1q  can be eliminated from the system of differential 

equations, and the regularized form of differential equations that is only concerned with 
temperature can be derived: 

xxxxxxxxx YTCTBTA ++= 1
                            (29) 

Similarly, 1T =0 with the assumption that the temperature boundary conditions do not vary 

with time, Eq.(29) can be changed into the following form 

xxxxxxx YTBTA +=                                 (30) 

where, 
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Now, Eq.(30) is the normalized system of differential equations only concerned with 
unknown temperatures. To solve the time-dependent system of equations Eq. (30), the finite 
difference method (FDM) or precise integration method (PIM) [15] can be used to 
approximate the time evolution of temperatures. In this paper, we adopt the backward 
differentiation scheme [42], which is unconditionally stable and non-oscillatory in solving 
system of ordinary differential equations, to solve Eqs.(30) and (25). 

4.2  Time marching scheme 

To solve the equation set (30) and (25), we adopt the finite difference method to approximate 
the time derivative term: 
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where, n
xT  represents the temperature at the n-th time step, and θ  is the Euler parameter 

which usually takes a value between 0.5 and 1 [40]. In this study, we take 1=θ . Substituting 
Eqs.(34) and (35) into Eq.(30), yields 
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where, 
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where xxA , xxB  and xY  are defined by Eqs.(31)-(33). 

 

With a similar process, substituting Eqs.(34) and (35) into Eq.(25), the heat fluxes 1q  at 

nodes on Dirichlet boundary can be evaluated at each time step: 
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where,  
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In Eqs.(39)-(41), x1E , x1 D  and 1 F  are determined by Eqs.(26)-(28). Now, Eq.(36) and 

Eq.(39) can be employed to trace the time evolution of temperature and heat flux. 

5. Numerical example 

A Fortran code, named SIEBEM (single interface integral equation boundary element method) 
using the presented interface integral formulations in this paper has been developed. 

5.1  Transient heat conduction in a two-media composed square flange 

This example focuses on a square flange with four reinforced mounting holes, which are 
equally distributed along a circle with radius of cm 374.5=Φ , as shown in Fig. 2. The flange 
and the mounting holes are made of different materials, marked with different colors in Fig.2. 
The initial temperature is assumed to be T0 = 0℃. The temperature at the inner circular side 
suddenly changes to 800℃, while the temperature at the outer side of the square keeps 0℃. 
Inner sides of the mounting holes are temperature insulated. 
 
Due to symmetry of the flange, only a quarter is analyzed. The geometry and boundary 
conditions are shown in Fig. 3, where point O(x=0, y=0) is the spatial origin, point C (x =3.8, 
y =3.8) represents the center of the mounting hole. Symbols Ω1 and Ω2 are the computational 
domains for two different media, respectively. 
 
The material properties for media Ω1 and Ω2 are listed in Table 1, where k represents the 
thermal conductivity, cp represents the specific heat, and ρ the mass density. 
 



      

Figure 2. Square flange          Figure 3. Quarter of the flange 

 
Table 1.  Material properties for each medium 

Medium k (W/m∙K)  cp (J/kg∙K)  ρ (kg/m3)  
Ω1 200 490 8.9×103 
Ω2 40 900 6.6×103 

 
The inner circular side of the flange is discretized into 30 equally-spaced linear boundary 
elements, and each of the two straight outer boundary lines is discretized into 35 
equally-spaced linear elements. The whole BEM model employs 998 nodes, in which 180 are 
outer boundary nodes, 40 are interface nodes, and 778 are internal nodes distributed within 
the domain. Fig. 4 shows the BEM model for computation. For comparison, this model is also 
analyzed using the conventional multi-domain boundary element method (MDBEM) reported 
in [25]. By using the same scale of mesh discretization, the MDBEM shown in Fig. 5 employs 
998 nodes and 260 boundary elements. Since the interface marked with ‘F’ shown in Fig.5 has 
to be discretized into elements in each medium, the number of elements used in the MDBEM 
model is bigger than that used in the SIEBEM model. Therefore the computation scale for the 
MDBEM model is bigger than that of the SIEBEM model. 

       

Figure 4.  SIEBEM model           Figure 5.  MDBEM model 



 

Figure 6.  FEM mesh 

A 10s time period is analyzed with 100 equally discretized time steps, and the length of each 
time step is s 1.0=∆t . To provide a reference solution to compare with the BEM results, the 
solution of this problem is computed using the commercial software ABAQUS. Fig.6 shows 
the FEM mesh. 
 
Around the inner circle of the mounting hole with radius of R2=0.7cm, the temperature 
distribution at different times calculated by SIBEM, MDBEM and FEM software are shown 
in Fig.7. And Fig.8 shows the temperature distribution along x direction at the y =0 symmetric 
straight edge. Fig. 9 compares the BEM results with FEM results for the temperature with 
time around the interface circle with the radius R3=1.5cm in Fig.3. From Figs. 7 - 9, we can 
see that the results of SIEBEM coincide well with the results of MDBEM and FEM software, 
which validates the correctness of the presented method.  
 

 

Figure 7.  Temperature distribution along inner circle R2=0.7cm 

 



 

Figure 8.  Temperature distribution along the y = 0 straight edge 

 

 

Figure 9.  Temperature distribution along the interfacial circle R3=1.5cm 

Fig.10 shows the contour plots of the temperature distribution at different time. From 
Fig.10, we can easily find the discontinuous effect of temperature distribution when crossing 
the interfacial circle between the body of the flange and the mounting hole. 

       

a                                 b 



       

c                              d 

Figure 10.  Counter plot of the temperature at different times:  

(a) t = 1s ; (b) t = 2s; (c) t = 5s; (d) t = 10s 

5.2  3D transient heat conduction in a four-media composed hollow cylinder 

The third example to be considered is a hollow cylinder with a reinforcing stair, which is 
composed of four different media denoted by Ω1, Ω2, Ω3 and Ω4, as shown in Fig.11 (a) . The 
initial temperature is assumed to be T0=0℃. Then the temperature at the top surface changes 
to 800℃, while the temperature at the bottom surface stays as 0℃. The other sides are 
thermally insulated. Due to symmetry of the problem, only a quarter of the hollow cylinder is 
modeled. Figs. 11(b) and 11(c) shows detailed dimensions and boundary conditions for the 
geometrical model. 
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Figure 11. Four-media composed hollow cylinder: (a) 3D global view; (b) top view; 

(c) right-side view 

The material properties of the four media are prescribed as functions of spatial coordinates, 
and Table 2 gives these specific functions of coordinates for each medium. In order to show 
the variation of material properties with respect to the spatial coordinates more vividly, the 
profiles of thermal conductivity k and specific heat cp are illustrated in Fig. 12. From Fig.12 
we can see that the material properties vary in space continuously within each medium but 



jump across the interfaces between different media. 
 

Table 2.  Material properties for each medium 

 k (W/m∙K) cp (J/kg∙K) ρ (kg/m3) 
Ω1 200×e50z 500×e30z 8900 

Ω2 )03.0(10400 224 −++ yx  )03.0(102900 224 −+×− yx  2700 

Ω3 200+104( z - 0.01) 500-104(z-0.01) 7900 
Ω4 600-106(z-0.03)2 700-5×105(z-0.03)2 6900 

 

 

Figure 12.  Profiles of thermal conductivity and specific heat along z-direction 

The BEM mesh employs 880 4-node linear elements, in which 144 are interface elements 
distributed on the three interfaces between every two different media. Discontinuous elements 
are used at the intersection points between the interface and outer boundary, ensuring that a 
collocation point is either used by an outer boundary element or an interface element, see Fig. 
13. The total number of nodes is 1546, among which 823 are boundary nodes, 195 are 
interface nodes, and 528 are internal nodes. Fig. 13 shows the BEM model for computation, 
in which different media are marked with different colors. 
 

 

Figure 13.  BEM mesh for the hollow cylinder 



A 10 second time period is analyzed with 100 equally discretized time steps, and the length of 
each time step is Δt = 0.1s. For comparison, this model is also analyzed with ABAQUS by 
using the UMATHT subroutine [43]. Fig. 14 shows the distribution of temperature along z 
direction over the inner side vertical line of x = 2 cm and y = 0 cm. Fig. 15 shows the 
temperature distribution along x direction over the spatial straight line of y = 0 cm and z = 1 
cm. From Figs. 14 and 15 we can see that the BEM results coincide well with the FEM results, 
demonstrating the correctness of the proposed method. From Fig. 14, we can easily find that 
three segment of curves compose the profile of temperature at each time step. And in Fig.15, 
the profile is composed by two segments. This effect is caused by the jump effect of material 
properties in multi-medium problems. 

 

Figure 14.  Temperature distribution along the z coordinate direction 

 

 

Figure 15.  Temperature distribution along the x coordinate direction 

To examine the time evolution of temperature, three points A (1.7678, 1.7678, 3), B (1.4142, 
1.4142, 4) and C (1.4142, 1.4142, 2), are investigated. Table 3 shows the comparison of the 
temperature results at each time step between BEM and FEM method. Relative errors are also 
calculated, taking the ABAQUS results as standard values. From Table 3 we can see that the 
relative errors converge to zero with time evolution, indicating that the presented method is 



stable with time. 
 

Table 3.  Computed temperatures at points A, B and C with Δt = 0.1s 

t(s) 
A B C 
BEM Abaqus Error(%) BEM Abaqus Error(%) BEM Abaqus Error(%) 

1 125.116 123.891 0.989 292.614 290.528 0.718 35.345 35.523 -0.500 
2 262.106 260.178 0.741 421.561 419.452 0.503 121.269 120.420 0.705 
3 350.276 348.363 0.549 493.677 491.700 0.402 194.533 193.266 0.656 
4 408.304 406.638 0.410 539.235 537.480 0.326 247.504 246.302 0.488 
5 447.202 445.886 0.295 569.295 567.807 0.262 284.317 283.406 0.321 
6 473.492 472.552 0.199 589.482 588.271 0.206 309.561 309.012 0.178 
7 491.323 490.739 0.119 603.138 602.187 0.158 326.784 326.588 0.060 
8 503.434 503.161 0.054 612.403 611.681 0.118 338.511 338.627 -0.034 
9 511.665 511.653 0.002 618.696 618.167 0.086 346.688 346.865 -0.051 
10 517.470 517.458 0.002 622.974 622.601 0.060 352.483 352.500 -0.005 
 
To examine the influence of the length of each time step Δt on the computed results, 
temperatures at points A, B and C are also computed by using different values of Δt. Fig. 16 (a) 
shows the change of relative errors using the time step Δt = 2s. In Fig.16 (a), both SIEBEM 
and ABAQUS results are calculated on Δt = 2s, and the ABAQUS results are utilized as the 
standard values. Meantime, Fig. 16 (b) shows the change of relative errors using Δt = 0.04s, 
equally the ABAQUS results on Δt = 0.04s are also given as the standard values. By 
comparing Figs. 16 (a) and 16 (b) we can see that, even Δt = 2s is 50 times the length of Δt = 
0.04s, the results calculated by SIEBEM coincide well with ABAQUS results, and their 
relative errors converge to zero, indicating that the presented method is stable and highly 
precise. 

 

   

a                                           b 

Figure 16.  Relative errors of temperature along with time: (a) Δt = 2s; (b) Δt = 0.04s 



6.  Conclusions 

In this paper, based on a newly derived interface integral equation, a new and simple BEM 
characterized as interface integral equation method is developed for solving transient heat 
conduction in multi-medium materials with variable material properties. To solve the 
time-dependent system of differential equations, firstly the unknown heat fluxes are 
eliminated from the system of differential equations, then based on an implicit backward 
differentiation scheme, an unconditionally stable and non-oscillatory time marching solution 
scheme is developed for solving the normal time-dependent system of equations. 
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