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Abstract 

In this paper, a Consistent Particle Method (CPM) is presented to model violent wave impact with 

compressible air pockets. The novelty of this method lies in four key aspects: (1) accurate 

computation of spatial derivatives for Laplacian and gradient operators (and hence better pressure 

prediction) without the use of kernel function unlike some other particle method, (2) rational 

treatment of density discontinuity at the water-air interface without any smoothing or smearing 

scheme, (3) a thermodynamics-based compressible solver for modelling compressible air that 

eliminates the need of determining the artificial sound speed, and (4) two-phase coupling of 

compressible air solver and incompressible water solver without iteration between the two solvers. 

An experimental study of sloshing impact with entrapped air pocket is conducted to validate the 

numerical model. 
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Introduction 

Modelling of wave impact on structures is of great practical interest in offshore and marine 

engineering e.g. for design of seawalls against tsunami waves in terms of the required height and 

strength. With the rapid advances of computer power, many numerical methods have been 

developed to predict the wave profile and impact forces. However, most of these studies
1, 2

 do not 

consider the presence of entrapped air pockets, or treat the air pockets as incompressible. While 

incompressibility is a reasonable assumption in some water-air flow scenarios
3
, air entrapment or 

entrainment may be generated in some other problems such as violent wave impact on structures
4
. 

The compressibility of entrapped air pockets can play an important role in the water-air interaction 

in terms of influencing the pressure peak and impact duration in a wave impact process
5
. Therefore, 

it is necessary to include air compressibility to better simulate such water-air flow problems. 

 

The numerical difficulties to model wave impact problems with entrapped air pockets include the 

large and discontinuous deformation of fluid and the abrupt discontinuity of fluid properties 

(density and viscosity) at the interface between water and air. A greater challenge is to have an 

integrated solution for water and air that behave very differently, the former being practically 

incompressible and the latter highly compressible. To address these issues, many mesh-based 

methods (such as Finite Difference Method and Finite Volume Method) and particle methods have 

been developed. Due to the meshless and Lagrangian nature, particle methods possess three 

inherent advantages over mesh-based methods: (1) better capability in modelling large and 

discontinuous fluid motion such as breaking waves, (2) better tracking of moving interface of 

different fluids, and (3) no numerical diffusion induced by the convection term in the Navier-Stokes 

equation. Therefore, a particle method was selected as the underlying tool of the present study. The 

most commonly used particle methods include SPH, ISPH, MPS and CPM. The primary difference 

between them lies in the computation of spatial derivatives. Compared to the other three, CPM 

computes the gradient and Laplacian operators in a more fundamental way by using Taylor series 
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expansion. Eliminating the use of a kernel function, the spatial derivatives can be approximated 

much more accurately and hence no artificial schemes are required
6
. 

 

The main difficulties of using CPM to simulate violent waves with air entrapment is the 

approximation of spatial derivatives with sharp density change across fluid interface and the 

consistent modelling of incompressible water and compressible air. To address these two issues, an 

improvement of the derivative-approximation scheme in the original CPM was recently proposed to 

deal with the sharp density discontinuity
6
. In addition, a thermodynamically-consistent 

compressible solver that not only can be integrated with the developed incompressible solver 

seamlessly but also can overcome some issues encountered by other compressible solvers is 

developed
7
. In this paper, the main features and advantages of CPM are presented systematically. 

Using this method, water sloshing with entrapped air pocket in a specially designed oscillating tank 

is studied with our own experimental validation. 

Governing equations and CPM formulations 

The governing equations for viscous Newtonian fluids (both incompressible and compressible) in a 

two-fluid system are the Navier-Stokes equations as follows
8
: 
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where ρ is the density of fluid, v the particle velocity vector, p the fluid pressure, μ the dynamic 

viscosity of fluid and g the gravitational acceleration. 

 

For both incompressible and compressible fluids, the governing equations are solved by a predictor-

corrector scheme
9, 10

. In the predictor step, the temporary particle velocities and positions are 

computed by neglecting the pressure gradient term. In the corrector step, a pressure Poisson 

equation (PPE) can be derived as follows 
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For incompressible fluids, the incompressibility condition is enforced by setting the fluid 

density at the current time step ( ( 1)k  ) to the initial value ( 0 ). The intermediate fluid density (
* ) is evaluated in the same way introduced in Luo et al. 

6
. For compressible fluids, although a 

similar approach is used to evaluate fluid density, a slow-slope weighting functions whose value 

at r = 0 is smaller is adopted to allow more compressibility of fluid (more details can be 

referred to Luo et al. 
7
). Another distinct feature in the simulation of compressible flows is that, 

without the incompressibility condition, the fluid density ( 1)k   in Equation (3) should be 

treated as unknown (more details will be presented later). 

Gradient and Laplace operators involving density discontinuity 

The derivative computation scheme in CPM is derived based on Taylor series expansion. This 

scheme has been demonstrated to work well for 1-phase flows
11, 12

. In two-phase flows, the pressure 

function is continuous at the fluid interface but its gradient changes drastically because of the large 

density difference between two fluids (e.g. water and air densities differ by three orders of 

magnitude)
6
. Hence, when applied to pressure, the scheme introduced in the previous section does 



3 

 

not give good approximation of gradient and Laplacian terms near the fluid interface. This problem, 

nevertheless, can be resolved by observing that the pressure gradient normalized with respect to 

density, i.e. /p  , is of the same order of magnitude in the two fluids of a general dynamic 

problem and, in the hydrostatic case, is in fact constant. By addressing the normalized pressure 

gradient term, the formulation to compute the gradient and Laplacian operators with abrupt density 

discontinuity can be derived to be (more details can be referred to Luo et al. 
6
) 
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The coefficients 
1 jC  and 

3 jC  are the same as those in  1-phase CPM
11

. The above reformulation 

retains the consistency with Taylor series expansion in computing the required gradient and Laplace 

terms with abrupt density discontinuity. Since no density smoothing or smearing scheme is needed, 

this scheme is able to model sharp fluid interface (e.g. water and air whose density difference is 

about three orders of magnitude) with good accuracy. 

Compressible solver based on thermodynamics 

For compressible flows, ( 1)k   in Equation (3) is unknown and hence a closure condition is needed 

to solve the PPE. The polytropic gas law as shown in Equation (4) is selected to be the closure 

relation since it does not require the input of speed of sound ( sc ), which is dependent on the 

composition and temperature of a fluid. This avoids the need to determine the actual or numerical 

sound speed, unlike in the sc  dependent EOS. 

 constant
p

  (4) 

where γ is the ratio of specific heats at constant pressure and constant volume. Its value for air is 

about 1.4. 
 

Incorporating the closure condition of Equation (4) to Equation (3), the PPE accounting for 

fluid compressibility can be obtained as (more details can be referred to Luo et al. 
7
) 
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Since the speed of sound sc  is not involved in Equation (5), the issue of how to determine the actual 

or numerical value of sc  is avoided. This is a significant benefit of the present compressible solver. 

More importantly, this thermodynamically-consistent compressible solver and the previously 

proposed incompressible solver
6
 both use the predictor-corrector scheme to solve the same 

governing equations and thus can be easily integrated, leading to the complete two-phase model. 

Named 2-phase CPM, it is capable of simultaneously and consistently simulating two-phase 

incompressible and compressible flows with large density difference. 



4 

 

Numerical examples 

Sloshing impact with entrapped air pocket 

To study wave impact scenario with entrapped air pocket, a new experiment is designed and 

conducted as shown in Figure 1. The water container comprises a big (left) tank connected by a 

short channel to a small (right) tank. It is designed such that when water in the left tank sloshes 

to the right (or left), some water will move through the connecting channel and compress (or 

expand) the air in the right tank. The same tank as shown in Figure 16 of Luo et al. 
7
 is used. 

Air pressure at the middle of the top wall of the right tank, i.e. PA1, is measured by an absolute 

pressure sensor. Water pressures at 60 mm from the bottom on the right wall of the right tank 

(PW1) and 30 mm from the bottom on the left wall of the left tank (PW3) are measured by gauge 

pressure sensors. 

 

Figure 1. Setup of water-air sloshing experiments in a connected container under rotational 

excitation 
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Figure 2. Wave profiles of sloshing in a connected tank with closed air pocket under 

rotational excitation: experimental result and CPM simulation 

In the case presented in this section, the filling depth is adopted to be 0.18 m. The excitation 

frequency of 0.92ω0 (= 3.6493 rad/s) is found to generate a relatively large variation of air pressure 

in the right tank, where ω0 is the reference frequency (not the natural frequency of the sloshing 

system but only a reference value) computed based on the linear wave theory with water depth (dL) 

and length (LL) in the left tank. In numerical simulation, an initial particle distance of 0.005 m and 

fixed time step 0.0005 s are adopted on the tradeoff between accuracy and efficiency. The water and 

air densities at the NTP (Normal Temperature and Pressure) condition are adopted. The dynamic 

viscosities of water and air are selected to be 10
-3

 Pa·s and 1.983×10
-5

 Pa·s respectively. 

 

The wave profiles and pressure histories at points A1, W1 and W3 are presented in Figure 2 and 

Figure 3. Generally good agreement between numerical simulation and experimental result  is 

obtained. The water moves like a bore (because of the relatively low filling depth) which 

develops over time (see t = 2.00 s and 2.88 s in Figure 2). At t = 3.12 s, violent wave impact 

occurs near the connecting channel, generating large compression force to the air pocket in the 

right tank. This can be clearly seen in Figure 3a, which shows a large peak for the air pressure 

at point A1. As the water in the left tank runs up along the right wall of the left tank ( t = 3.20 s 

in Figure 2), the compression force continues to exert on the air pocket in the right tank. At t = 

3.68 s, the run-up water falls back to the water body and begins to move towards left. It is noted 

that the air pressure in the right tank shows vibration during the impact process.  The air 

t = 3.12 s 

t = 3.20 s 

t = 3.68 s 
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pressure also influences the water pressure near the air pocket (see the water pressure at Pw1 as 

shown in Figure 3b). 
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Figure 3. Simulated air pressure at Point PA1 and water pressures at Point PW1 and PW3 in 

comparison with experimental results 

The pressure vibration in the air pocket is further investigated through a power spectral analysis 

using the Fast Fourier Transform (FFT). It is interesting to note that there is only one peak 

value, i.e. 6.120 Hz, in the frequency-power curve. It means that the air pressure vibrates with 

one distinctive frequency. To verify that this pressure vibration is real and not spurious due to 

the numerical algorithm, the natural frequency of the air tube (under the compression of water) 

is derived. Following Ramkema 
13

 who addressed the problem of wave impact on coastal 

structures, the air-pocket-water system is represented by a mass-spring system as shown in 

Figure 4, in which the spring is the air pocket and the mass is the water effectively contributing 

to the impact. The upper bound of the effective water mass is the water in the connecting 

channel and the right tank, while the lower bound is the upper bound excluding the water in the 

rectangular region at the right bottom corner of the container (the region within the dash-dot 

line in Figure 4). Since water at the right bottom corner (dark shaded region in Figure 4) is 

almost stationary relatively to the tank (theoretically the right bottom point of the container is a 

stagnation point), the effective mass of the present problem (light shaded region in Figure 4) is 
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approximated to be water in the connecting channel and the right tank excluding the right 

bottom corner. 

 

Figure 4. Schematic view of water impact on an air pocket (not to scale) 

Assuming the water level in the right tank to be horizontal and giving it a small perturbation z, 

the force (per unit width) applied on the effective water mass is as follows 
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where 0ap
 
is the initial air pressure in the right tank, LR the length of the right tank and Ha0 the 

initial height of the air tube. Ignoring the friction forces from the tank walls, the dynamic equation 

for the effective water mass is as follows 
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where Mw is the effective water mass (per unit width). Then the natural frequency of the dynamic 

system can be obtained as 
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the form of which is similar to that derived by Cuomo et al. 
14

 who analytically studied wave 

impingement entrapping an air pocket against vertical wall. Substituting the upper and lower 

bounds of Mw into Equation (8), the lower and upper bounds of the natural frequency of the 

entrapped air pocket can be obtained to be 5.668 Hz and 6.507 Hz, whereas the natural frequency 

corresponding to the adopted value of Mw is 6.296 Hz. Compared to the observed frequency of 

pressure vibration (i.e. 6.120 Hz) in the experimental result, the relative differences are only 7.3 %, 

6.3 % and 2.8 %, respectively, for the lower and upper bounds and the adopted value of Mw. 

Therefore, the accuracy of this simplified model is acceptable. The study on the natural frequency 
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of the air pocket further substantiates that the pressure oscillations observed in the experiment and 

CPM simulation are real and due to the natural vibration of the entrapped air pocket (air cushion 

effect). 

Conclusions 

In this paper, the novel CPM is presented with three features: (1) Accurate computation of first- and 

second-order derivatives in a way consistent with Taylor series expansion even in two-phase cases 

with abrupt density change to about 1000; (2) A thermodynamically-consistent compressible solver 

by employing the polytropic gas law; (3) Seamless integration of the incompressible and 

compressible solvers such that wave impact problems with entrapped air pocket can be simulated in 

a simultaneous way. 

 

An experimental study of water sloshing in a specially designed tank is conducted to measure the 

pressure change of a closed air pocket under wave impact. Numerical results including wave 

profiles, wave impact pressures and particularly the pressure vibration in the air pocket predicted by 

CPM agree generally well with the experimental results. 
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