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Abstract
In electromagnetic and structural coupled problems such as magnetic damping vibration, the
staggered method is used for coupled analyses because of its low computational cost. However,
numerical instability may occur as a result of the time lag in coupled effect evaluation even if
the time integration method for each phenomenon is unconditionally stable.

In this study, the stability of staggered coupled analyses is evaluated based on the spectral radius,
and the stable regions of time increments with the intensity of the coupling effect are obtained.
The numerical stability of the coupled analysis methods is compared for various coupling effect
intensities based on the stable region.

The coupled analysis method with the conventional serial staggered algorithm and generalized–
α method is most stable. The stability of the conventional parallel staggered algorithm is much
improved if the generalized–α method is used.

Keywords: Numerical instability, Electromagnetic and structural coupled analysis, Coupled
algorithm, Time integration method, Numerical damping.

Introduction
The use of coupled finite element analyses such as fluid–structure interaction analysis and
electromagnetic–structural coupled analysis is increasing in the design of mechanical compo-
nents. Coupled finite element analysis methods are classified as simultaneous (or monolithic)
and staggered (or partitioned) methods. In simultaneous methods, the coupled finite element
equations are obtained by combining each finite element equation for multi-physics phenomena
and then solved. However, high computational cost is incurred because the matrix size becomes
large. In staggered methods, multiple finite element equations are solved separately. Because
the computational cost of the staggered method is low, this method is used in many coupled
analyses. However, numerical instability may occur owing to time lag in coupled effect evalua-
tion even if the time integration method for each phenomenon is unconditionally stable.

Many studies of staggered methods have been performed for fluid–structure interaction prob-
lems. In addition to the conventional serial staggered (CSS) algorithm, which is widely used
for staggered analysis, several coupled algorithms have been proposed such as the conventional
parallel staggered (CPS) algorithm, improved serial staggered algorithm and improved parallel
staggered algorithm; and then the numerical stability, result accuracy and computing time of
these methods have been discussed[1].

Magnetic damping vibration is one type of electromagnetic and structural coupled problem.
Studies have focused on magnetic damping vibration analysis, which is required for the design
of conductive structures located in a strong magnetic field, such as those in future fusion reac-
tors or magnetically levitated vehicles. Several coupled analysis methods have been compared



for magnetic damping vibration with the bending mode[2] and with the bending and torsional
mode[3] from the viewpoint of the modeling, formulation, type of element, and time integra-
tion method. In the past few years, the geometrical nonlinearity of magnetic damping vibration
has been discussed[4], and a coupled analysis method using a Lagrangian approach has been
proposed[5]. However, numerical instability occurs in magnetic damping vibration analysis
even if unconditionally stable time integration methods are used.

In this study, a stability evaluation method is proposed for the coupled finite element analysis
of magnetic damping vibration. In this method, the stability is evaluated by the spectral radius
obtained from the coupled eigenmode and the time integration scheme. Next, the numerical sta-
bility is examined by the stable region for various coupled analysis methods that are combined
with a coupled algorithm and a time integration method with numerical damping.

Coupled Finite Element Analysis Method for Magnetic Damping Vibration Problem
Magnetic Damping Vibration

Magnetic damping vibration occurs in a conductive structure located in a magnetic field. A
conductive structure is vibrated by the Lorentz force which is induced by an eddy current and a
magnetic field. While the structure is vibrating, the electromotive force reduces the eddy current
and vibration.
Finite Element Equations

The T method is used for eddy current analysis of the magnetic damping vibration problem of
a thin shell structure[6]. The matrix equation of the eddy current analysis is expressed using the
nodal point normal component T of the current vector potential and nodal point deformation
vector u:

UṪ + RT = Ceu̇ + Ḃex . (1)

Here, U, R, Ce, and Ḃex are the inductance matrix, the resistance matrix, the coupling sub-
matrix of electromotive force, and the time-varying external magnetic field, respectively.

The matrix equation of the structural analysis is expressed by

Mü + Ku = CsT + Fex , (2)

where M, K, Cs, and Fex are the mass matrix, the stiffness matrix, the coupling sub-matrix of
the Lorentz force, and the external force, respectively.
Coupled Algorithms

The coupled analysis methods for magnetic damping vibration are classified as simultaneous
and staggered methods. In the simultaneous method, the coupled finite element equation ob-
tained by combining Eqs. (1) and (2) has been solved[6] and shown to be unconditionally
stable[7]. In the staggered method, Eqs. (1) and (2) are solved separately and alternately. How-
ever, it is conditionally stable even if unconditionally stable time integration methods are used
for each equation because the solution diverges by numerical instability under specific condi-
tions, for example, according to the intensity of the magnetic field and the time increment. In
addition to the CSS algorithm, the CPS algorithm have been proposed for fluid–structure in-
teraction analysis[1]. According to the previous studies, the CPS algorithm has weak stability.
In this study, the numerical stability of these coupled algorithm are discussed for staggered
methods of magnetic damping vibration analysis.

Fig. 1 shows the data flow between the eddy current analysis and the structural analysis using
the CSS and CPS algorithms for magnetic damping vibration analysis. In the CSS algorithm,
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Figure 1: Procedures of staggered coupled algorithms for eddy current and structural
coupled analyses.

Eq. (1) for the eddy current analysis is solved using the results from the previous time step of
the structural analysis to evaluate the coupling term in Eq. (1). Then, Eq. (2) for the structural
analysis is solved using the results of eddy current analysis to evaluate the coupling term in
Eq. (2). In the CPS algorithm, Eq. (1) for the eddy current analysis and Eq. (2) for the structural
analysis are solved simultaneously and separately in each time step. The terms for the coupled
effect in Eqs. (1) and (2) are evaluated using the results from the previous time step.
Coupld Analysis Methods

For eddy current analysis, the backward difference method is applied. Eq. (1) becomes

(U + ∆tR)T t+∆t = ∆tCeu̇t+∆t + UT t + ∆tḂext . (3)

The backward difference method is unconditionally stable for uncoupled eddy current analysis.

For structural analysis, two types of time integration methods are applied. By using the param-
eter ρ∞ to control the numerical dissipation, Eq. (2) becomes{

(1− αm) 1
β∆t2 M + (1− αf ) K

}
ut+∆t

= (1− αf )F ext+∆t + αfF ext
+ Cs {(1− αf )T t+∆t + αfT t}

− M
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2β

)
üt −
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}
+ αmüt

]
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where

αm = 2ρ∞ − 1
ρ∞ + 1

, αf = ρ∞
ρ∞ + 1

, δ = 1
2
− αm + αf , β =

(1− αm + αf )2

4

for Newmark’s β method (δ = 1/2, β = 1/4) with αm = αf = 0, and the asymptotic annihi-
lation case ρ∞ = 0 of the generalized–α method (δ = 3/2, β = 1)[8]. These time integration
methods are unconditionally stable for uncoupled structural analysis.



For the electromotive force or the coupled effect in eddy current analysis, the coupling term
Ceu̇ is evaluated under the assumption that u̇ is equal to u̇t for both coupled algorithms. The
Lorentz force or the coupled effect in structural analysis is evaluated in a different way for each
coupled algorithm. In the CSS algorithm, the coupling term for structural analysis CsT can be
evaluated using T t+∆t obtained from the eddy current analysis in the same time step. In the
CPS algorithm, T is assumed to be T t to evaluate the coupling term.

Stability Analysis Method of Magnetic Damping Vibration Analysis
The stability of a time integration method for uncoupled analysis can be generally evaluated
using the spectral radius[9]. The stability of magnetic damping vibration analysis, which is one
type of coupled analysis, is also evaluated using the spectral radius[10].

The stability analysis method for the combination of the vibration modem and the eddy current
mode n is described below. By ignoring the term of the external transient magnetic field in
Eq. (3) for eddy current analysis and using the mode amplitude factor ū(m) for the vibration
modem, the mode amplitude factor T̄ (n) for the eddy current mode n is expressed as(

Ū (n) + ∆tR̄(n)
)
T̄

(n)
t+∆t = ∆tC̄(m)(n)

e
˙̄u(m)
t+∆t + Ū (n)T̄

(n)
t , (5)

where Ū (n) and R̄(n) are respectively the modal inductance and modal resistance of eddy current
mode n, and C̄(m)(n)

e is the modal electromotive force of the coupling effect between vibration
modem and eddy current mode n. On the other hand, by ignoring the term of the external force
in Eq. (4) for structural analysis, ū(m) is expressed as{

(1− αm) 1
β∆t2M̄

(m) + (1− αf ) K̄(m)
}
ū
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s
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t

]
− αfK̄(m)ū
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where M̄ (m) and K̄(m) are respectively the modal mass and the modal stiffness for vibration
modem, and C̄(m)(n)

s is the modal Lorentz force for the coupled effect between vibration mode
m and eddy current mode n.

By combining Eqs. (5) and (6) and moving terms according to the time, the recurrence equation
of the magnetic damping vibration analysis becomes{

¨̄u(m)
t+∆t

˙̄u(m)
t+∆t ū

(m)
t+∆t T̄

(n)
t+∆t

}T
= A

{
¨̄u(m)
t

˙̄u(m)
t ū

(m)
t T̄

(n)
t

}T
. (7)

The stability of the magnetic damping vibration analysis can be evaluated using the modulus of
the complex eigenvalue |λ(m)(n)|, which is the spectral radius of the amplitude matrix A. If any
|λ(m)(n)| is greater than 1.0, the coupled analysis method is considered unstable.

The stability analysis method is applied to the coupled analysis method with CSS algorithm and



Newmark’s β method. The eigenvalues λ of A are obtained from the characteristic equation

λ4 +
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4 + ω2∆t2 −
1

1 + φ∆t
− 2∆t2

4 + ω2∆t2
1

1 + φ∆t
C̄eC̄s

M̄Ū
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}
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where

ω =

√
K̄

M̄
, φ = R̄

Ū
,

and the superscripts (m) and (n) of the modal coefficients are omitted. The characteristic equa-
tions for other coupled analysis methods are obtained in the same way as described above.

The values of ω, φ, and
C̄eC̄s

M̄Ū
in Eq. (8) depend on the material properties, geometric configura-

tion, and intensity of the coupled effect, so they are obtained using theoretical and finite element
solutions. The value of ω is obtained from Young’s modulus, mass density, length, width, and
thickness of the plate by using the theoretical solution for a thin flexible plate. For the values

of φ and
C̄eC̄s

M̄Ū
, the characteristic equation of the magnetic damping vibration[11] is used. By

combining modal Eqs. (1) and (2), the characteristic equation becomes

α3
c + φ α2

c +
(
ω2 − C̄eC̄s

M̄Ū

)
αc + ω2φ = 0, (9)

where αc is coupled eigenvalue that depends on the geometry. By using the result of the eigen-
value of the coupled finite element monolithic matrix equation[11] combined with Eqs. (1) and

(2), Eq. (9) becomes a complex linear equation with unknown variables φ and
C̄eC̄s

M̄Ū
, which

are determined through this equation. Therefore, the eigenvalue of the characteristic equation
Eq. (8) can be solved numerically for each ∆t using the Newton method, and the stability can
be evaluated using the spectral radius |λ|.
Results of stability analysis of coupled analysis methods
Magnetic Damping Vibration of Elastic Plate

The coupled analyses are performed for a magnetic damping vibration problem, as shown in
Fig. 2[2]. A copper rectangular plate clamped at one end is placed in a longitudinal steady
magnetic field Bx and transient magnetic field

Bz = 5.5× 10−2 exp −t
6.6× 10−3 [T], (10)

that is applied perpendicularly to the plate surface. The Lorentz force produced by both the
eddy current induced by Bz and Bx causes bending vibration. While the plate is vibrating, the
electromotive force induced by the vibration velocity andBx induces a coupling effect to reduce
the eddy current and vibration.
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Figure 2: Schematic diagram of a clamped plate placed in electromagnetic field.

Verification of the stability analysis method

The spectral radii |λ| obtained by the stability analysis for the coupled analysis methods using
the CSS algorithm are shown in Fig. 3 for Bx = 0.5 T. The time increment ∆t is normalized by
the natural period τ0 = 9.37 × 10−2 s for the first vibration mode. The critical time increment
∆t(s)
c is defined from the limit of ∆t when all |λ| values become less than or equal to 1.0. If any

value of |λ| is greater than 1.0, the coupled solution is unstable. For coupled analysis method
with generalized–α method, |λ| is always less than 1.0.

The validity of the stability analysis method should be confirmed using the coupled finite ele-
ment analysis for various values of ∆t, in which the staggered method for both the vibration
mode response analysis and the eddy current mode response analysis is used. For coupled anal-
ysis methods with Newmark’s β method, coupled finite element analyses are performed under
the time increment conditions of both ∆t < ∆t(s)

c and ∆t > ∆t(s)
c . For coupled analysis method

with the generalized–α method, coupled finite element analysis is performed using large ∆t,
such as the natural period τ0.

Fig. 4 shows the deflections at the free end of the plate. According to Fig. 4(a), the results
obtained using the method with Newmark’s β method is stable when ∆t < ∆t(s)

c , but it is
unstable when ∆t > ∆t(s)

c . For the method with the generalized–α method, instability is not
observed in Fig. 4(b) even if ∆t is set to be as large as the natural period.

The |λ| values obtained by the stability analysis are shown in Fig. 5 for the coupled analysis
methods with the CPS algorithm. For the method with the generalized–α method, |λ| is always
less than 1.0. Fig. 6 shows the deflections of the plate obtained using the CPS algorithm. Ac-
cording to Fig. 6(a), the results obtained using the method with Newmark’s β method is stable
when ∆t < ∆t(s)

c , but it is unstable when ∆t > ∆t(s)
c . For the method with the generalized–α

method, instability is not observed in Fig. 6(b) even if ∆t is set to be as large as the natural
period. Therefore, the validity of the stability evaluation method using the spectral radius is
confirmed for the coupled analysis methods for the magnetic damping vibration.

Comparison of Numerical Stability
The numerical stability of the coupled analysis methods is compared for various intensities of
the coupling effect. Fig. 7 shows the normalized critical time increment ∆t(s)

c /τ0 for various
steady magnetic fields Bx, which is proportional to the intensity of the coupling effect. The
lower left region of each curve is stable, whereas the upper right region is unstable because of
the high intensity of the coupling effect. Although Newmark’s β method, the generalized–α
method and the backward difference method are unconditionally stable for uncoupled analysis,
all coupled analysis methods using these time integration methods are conditionally stable on
account of the staggered coupled analysis method. Because ∆t(s)

c /τ0 becomes smaller with
increasing intensity of the coupling effect, the stability deteriorates with the coupling effect. The
stable regions of the coupled analysis methods with the generalized–α method are larger than
those with Newmark’s β method. This is because the numerical damping of the generalized–α
method may suppress the instability induced by these coupled analysis methods.
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When results for the CPS algorithm are compared with those for the CSS algorithm, the stable
regions of the CPS algorithm are smaller than those of the CSS algorithm, which is the same
tendency as in the fluid–structure interaction analysis with the CPS algorithm[1]. This may be
because the time lag of coupled effect evaluation for the CSS algorithm treats only the elec-
tromotive force, whereas that for the CPS algorithm treats both the electromotive force and the
Lorentz force. Although the stability of the CPS algorithm was worse than that of the CSS
algorithm in general, it was much improved when using the generalized–α method, and this
offers the advantage of a shorter computing time.

Conclusions
A stability evaluation method using the spectral radius was proposed and applied to the cou-
pled finite element analysis of magnetic damping vibration. The stability was evaluated for
coupled analysis methods that were combined with a coupled algorithm and time integration
method. The validity of the stability evaluation method and the results of stability analysis were
confirmed through comparisons with the results of coupled finite element analyses.

The coupled analysis method with the CSS algorithm and generalized–α method is the most
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suitable for the coupled finite element analysis of the magnetic damping problem. The generalized–
α method is superior to Newmark’s β method from the viewpoint of the stability of the coupled
analysis. The CPS algorithm is considered inferior to the CSS algorithm in terms of numerical
stability, but the stability is much improved if the generalized–α method is used. Then, the
advantage of parallel computing can be better utilized when the intensity of the coupling effect
is low.
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