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Abstract

In this work, a computational model for the interaction of blood flow with the wall of an
intracranial saccular aneurysm that is surrounded by cerebral spinal fluid is considered.
The coupled fluid-structure interaction model presented includes growth and remodeling
effects within the soft-tissue by incorporating elastin and collagen dynamics which are two
of the main layers in the arterial wall. The resulting nonlinear system of coupled differen-
tial equations are solved numerically using implicit finite difference methods coupled with
the Newton’s method. The linearized version of the nonlinear system was also considered
and solved both analytically using Laplace transformation and numerically using implicit
finite difference methods. The nonlinear effects on rupture was studied and compared for
benchmark studies and the computational results indicate that the model proposed is ro-
bust and reliable.
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Introduction

Over the last three decades there has been a lot of efforts to study intracranial saccular
aneurysms which are focal dilatation of the arterial wall that are found in the Circle of
Willis. The specific mechanisms responsible for their genesis, enlargement, and rupture
has been a prominent area of research during these years. There have been competing
hypothesis in the literature on the pathogenesis and lesion development involving limit
point instabilities, [12, 1, 7], equilibrium wall stress and wall strength comparisons [2]
and instability of the wall in response to pulsatile blood flow [8, 18, 13, 17, 19, 11].

Intracranial Saccular aneurysm which is a soft tissue interacts with a variety of flows in-
cluding blood as well as the Cerebral spinal fluid. Based on the influence of various
bio-mechanical factors, the growing aneurysm can be potentially ruptured and that leads
to either a neurological disorder or death. About 80% to 90% of ruptured aneurysms leads
to death [21].
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In the last two decades, several researchers have tried to investigate different aspects of
biomechanics of aneurysms [14, 15, 16, 20]. Different groups of researchers had identi-
fied the elastodynamics of the arterial wall interaction with the blood flow to be the main
reason for the rupture of an aneurysm [8, 18, 13]. A coupled fluid-structure model to
understand the elastodynamics better was studied more extensively in the past few years
[17, 19, 4, 11]. These models introduced mathematical models of increasing complexity
for intracranial saccular aneurysms that described the coupled interaction between blood,
arterial wall, and Cerebral Spain Fluid (CSF). In [19], the CSF was modeled using sim-
plified Navier-Stokes equations, whereas the arterial wall structure was modeled using a
spring mass system. A Fourier series was used to model the interaction between blood
pressure and inner wall. While the model developed yielded good insight into understand-
ing rupture, there was a great need to incorporate the growth and remodeling effects of the
soft-tissue that will help to introduce important attributes and constituent of the arteries
wall which will be the focus of this work. There are three main constituents of the artery
wall, namely, the elastin, the collagen, and the smooth muscle [9, 5]. The elastin is a stable
protein and is considered the most load bearing element that functions as resistance to the
formation of an anuerysm, whereas the collagen is the protein that is responsible for pre-
venting rupture after formation of an aneurysm. The growth of the aneurysm is associated
with deficiency of elastin and weakening of the artery wall [6]. Hence, elastin and colla-
gen should be incorporated into the modeling of arterial wall in order to obtain an accurate
biological model of the aneurysm that can lead to better interpretation and prediction for
this disease. This is one of the main contributions of this work.

In Section 2, we will describe the mathematical model that we will consider to solve a
coupled fluid structure problem. Section 3 describes the implicit finite difference imple-
mentation of the coupled system. In section 4 we include some results from our compu-
tational experiments indicating the influence of collagen and elastin. Finally in section 5,
we conclude and present some future work.

Mathematical Models and Background

The current work will build on models developed in [19] which helped to develop a
very simple mathematical model of a thin-walled, spherical intracranial aneurysm sur-
rounded by cerebral spinal fluid which is referred to as CSF (See Figure 1). This model
involved solving coupled partial differential equations for fluids (modeling blood and cere-
bral spinal fluid) interacting with elastic structures modeling aneurysms using novel ap-
proaches. These models in [19, 4] were validated using analytical techniques and compu-
tational tools.

Next we describe briefly the models that were proposed which will be considered in this



Figure 1: Model of an aneurysm in an arterial wall with blood inside and CSF outside

work and how they will be enhanced in this work using effects of growth and remodeling.

Model of the Cerebral Spinal Fluid

The model of Cerebral Spinal Fluid (CSF) considered in this paper is the simplified one
dimensional Navier-stokes equation. Assuming the CSF is inviscid and slightly compress-
ible with negligible non-linear effects, one can derive the following wave equation [19]:

vt = c2uxx (1)

ut = v (2)

Here u(x, t) is assumed to be the displacement of the CSF with v(x, t) as the velocity.
Since we are looking to find the movement of outer wall due to the interaction with CSF,
we consider x = 0 to denote the outer wall (See Figure 1) and therefore we are interested in
finding the solution to equations (1) and (2) at x = 0 that will describe the movement of the
wall at any time t ≥ 0. In order to solve the system, we will assume that the displacement
and velocity of the CSF is zero initially. This is given by the initial conditions:

u(x, 0) = v(x, 0) = 0. (3)

The boundary conditions will be described later after the discussion of the modeling of the
blood pressure and the arterial wall which are discussed next.



Model of the Blood Pressure

The blood pressure is modeled using Fourier series since we consider the behavior to be
pulsatile [3, 10, 17]. This relation can be described as:

PB(t) = Pm +
N∑
n=1

(An cos(nwt) +Bn sin(nwt)) (4)

where Pm is the mean blood pressure, An, Bn are Fourier coefficients, and w is the funda-
mental circular frequency [10].

Model of the Arterial Wall

We consider the arterial wall to be modeled using a simple spring-mass system that incor-
porates the elastin and collagen effects in the outer wall of the arteries. The force of this
system maybe denoted by FS which is given by FO − FI where FO and FI are the forces
of outer and inner wall respectively. This maybe expressed as:

FS = KEAE(t)σE(εE) +KCAC(t)σC(εC) − aPB(t) (5)

where KE, KC are the scaling coefficients, AE(t), AC(t) are the cross-sectional areas, and
σE(εE), σC(εC) are the stresses for elastin and collagen respectively. These stresses are
related to the respective strains through nonlinear constitutive laws given by:

εE = (((L+ u(0, t))/L)2 − 1)/2 εC = (εE + (1 − r2)/2)/r2

where L denotes the length of the unstrained tissue, u its extension, and r is the stretched
factor of unstrained tissue of collagen fiber.

Governing Equations of Motion

In order to solve the system (1)-(2), we need two boundary conditions. The first boundary
condition is at point x = 0, and it can be derived from the model of blood pressure and the
arterial wall that we have discussed. Note that the force balance equation at x = 0 maybe
written as:

FT = FF − FS. (6)

where FT = mvt(0, t) which is the inertial term corresponding to the product of mass
of the wall m and acceleration, FF = ρc2ux(0, t)a is the fluid force, with a is the cross-
sectional area and ρ, the density of the CSF.



Substituting equation (5) into (6) we obtain the following boundary condition at x = 0:

mvt(0, t) = aPm − KEAE(t)σE(εE) −KCAC(t)σC(εC) + ρc2aux(0, t)

+
N∑
n=1

(aAn cos(nwt) + aBn sin(nwt)) (7)

The second boundary condition can be obtained using the plane wave approximation that
states that the waves from the wall will die down some fixed distance away from the wall.
If this can be applied at point x = L , then the second boundary condition becomes [19]:

v(L, t) = −cux(L, t) (8)

Combining (1), (2), (3), (7) and (8), we obtain the following system of coupled fluid-
structure interaction problem:

vt = c2uxx

ut = v

u(x, 0) = v(x, 0) = 0 (9)
mvt(0, t) = aPB(t) −KEAE(t)σE(εE)

−KCAC(t)σC(εC) + ρc2aux(0, t)
v(L, t) = −cux(L, t)

For simplicity, we will assume that the cross-sectional areas are constant and a materially
linear constitutive relationship between stress and strain is considered. In particular, we
consider AE(t) = γE, AC(t) = γC , and σE(εE) = εE , σC(εC) = εC . Note that we still
consider the soft-tissue to be geometrically non-linear which is the relation between the
strains and the respective displacements. Given that system (9) is a coupled nonlinear sys-
tem, it requires a numerical solution which will be discussed next.

An Implicit Finite Difference Solution Method

In order to solve system (9), we use an implicit finite difference method wherein we will
replace the derivatives of the terms in the system by their corresponding finite difference
approximations in a discretized domain. We employ the following second order finite
difference approximation:



u′(yi) = u(yi + ∆y) − u(yi − ∆y)
2∆y +O(∆y2), ∆y ≤ yi ≤ Y − ∆y

u′′(yi) = u(yi + ∆y) − 2u(yi) + u(yi − ∆y)
∆y2 +O(∆y2) ∆y ≤ yi ≤ Y − ∆y

u′(0) = −3u(0) + 4u(∆y) − u(2∆y)
2∆y +O(∆y2) (yi = 0)

u′(Y ) = u(Y − 2∆y) − 4u(Y − ∆y) + 3u(Y )
2∆y +O(∆y2) (yi = Y )

where ∆x = L

M
, ∆t = tF

N
, 0 ≤ x ≤ L, and 0 ≤ t ≤ tF

Then the system (9) can be rewritten implicitly as:

vj+1
i − vj−1

i

2∆t = c2(uj+1
i+1 − 2uj+1

i + uj+1
i−1 )

∆x2 +O(∆x2,∆t), 1 ≤ i ≤ M − 1 (10)

uj+1
i − uj−1

i

2∆t = vj+1
i +O(∆t), 0 ≤ i ≤ M (11)

m(vj+1
0 − vj−1

0 )
2∆t = aPB(t(j + 1)) + ρc2a(−3uj+1

0 + 4uj+1
1 − uj+1

2 )
2∆x − KEγE

L
uj+1

0

−KEγE
L

(uj+1
0 )2 − KCγC

Lr2 uj+1
0 (12)

−KCγC
2L2r2 (uj+1

0 )2 − KCγC(1 − r2)
2r2 +O(∆x2,∆t)

vj+1
M = −c(uj+1

M−2 − 4uj+1
M−1 + 3uj+1

M )
2∆x +O(∆x2) (13)

Rewriting this nonlinear system as F (u) = 0 after dropping the higher order terms we get:

( 2c2

∆x2

)
uj+1
i −

(
c2

∆x2

)
(uj+1

i−1 + uj+1
i+1 ) +

( 1
2∆t

)
vj+1
i −

( 1
2∆t

)
vj−1
i = 0 (14)

uj+1
i − 2∆tvj+1

i − uj−1
i = 0 (15)



(
KEγE
2L2 +KCγC

2L2r2

)
(uj+1

0 )2+
(3ρc2a

2∆x +KEγE
L

+KCγC
Lr2

)
uj+1

0 −
(4ρc2a

2∆x

)
uj+1

1 +
(
ρc2a

2∆xu
j+1
2

)
+
(
m

2∆tv
j+1
0

)
−
(
m

2∆t

)
vj−1

0 − aPB(t(j + 1)) + KCγC(1 − r2)
2r2 = 0 (16)

cuj+1
M−2 − 4cuj+1

M−1 + 3cuj+1
M + 2∆xvj+1

M = 0 (17)

The system can be solved at each time step J + 1 for J ≥ 1 using the Newton’s method
for solving nonlinear system:

un+1 = un − J(u)−1F (u) (18)

where J(u) is the Jacobian matrix of the system, n is the Newton iteration number, and
F (u) is the system above. Here,

J(u) =
[
B(u) C
D E

]

B(u) =



3ρc2a
2∆x + KEγE

L
+ KCγC

Lr2 +
(
KEγE

L2 + KCγC

L2r2

)
uj+1

0
−4ρc2a

2∆x
ρc2a
2∆x 0 . . . 0

− c2

∆x2 2 c2

∆x2 − c2

∆x2 0 . . . 0
0 − c2

∆x2 2 c2

∆x2 − c2

∆x2 . . . 0
... . . . . . . . . . ...
... . . . . . . . . .
0 . . . 0 − c2

∆x2 2 c2

∆x2 − c2

∆x2

0 . . . 0 c −4c 3c



C =



m
2∆t 0 0 . . . 0
0 1

2∆t 0 0 . . . 0
0 0 1

2∆t 0 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 0 1

2∆t 0
0 . . . 0 0 0 2∆x





D =


1 0 . . . 0
0 1 . . . 0
... . . . ...
0 . . . 0 1



E =


−2∆t 0 . . . 0

0 −2∆t . . . 0
... . . . ...
0 . . . 0 −2∆t


To solve using the Newton’s method, we require a guess which we will use from the
solution at first two time steps.

For 1 ≤ i ≤ M − 1,

v1
i − v0

i

∆t = c2(u1
i+1 − 2u1

i + u1
i−1)

∆x2 +O(∆x2,∆t) (19)

for 0 ≤ i ≤ M ,
u1
i − u0

i

∆t = v1
i +O(∆t) (20)

m(v1
0 − v0

0)
∆t = aPBlood(t) + ρc2a(−3u1

0 + 4u1
1 − u1

2)
2∆x − KEγE

L
u1

0 − KEγE
2L2 (u1

0)2

− KCγC
Lr2 u1

0 − KCγC
2L2r2 (u1

0)2 − KCγC(1 − r2)
2r2 +O(∆x2,∆t) (21)

v1
M = −c(u1

M−2 − 4u1
M−1 + 3u1

M)
2∆x +O(∆x2) (22)

Then substituting the initial condition and drooping higher order terms, we get:
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)
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)
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(
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(
m

∆t
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L
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Lr2

)
u1

0 +
(
KEγE
2L2 + KCγC
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(u1

0)2 − 4ρc2a

2∆x u
1
1
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2∆xu
1
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cu1
M−2 − 4cu1
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M + (2∆x)v1

M = 0 (26)

Computational Experiments

In this section, we perform some computational studies to validate the numerical solution
to the geometrically nonlinear model that introduces the effects of the elastin and collagen.
Since this nonlinear system can only be solved numerically using nonlinear solvers, the
following steps are applied in order to validate this solution. First, the nonlinear model
is linearized using Taylor series expansion, and this linearized version of the model was
solved both analytically using Laplace transform and numerically using implicit finite dif-
ference approximation. The behavior of numerical solution against the analytical solution
was validated. After the validation, the influence of various parameters on the displace-
ment of the wall u(0, t) was investigated. Secondly, the numerical solution for the linear
model is used as initial guess for the nonlinear model to solve system numerically using
Newton’s method with implicit finite difference approximation. Finally the influence of
some parameters on the displacement of wall is also considered.

In this experiment, the following realistic values are utilized. For the CSF, p = 1000kg/m3,
c = 1500m/s are used. For the Wall, a = 0.01m2, kE = 800 N/m, kC = 3.52N/m,
AE = 20 m2, AC = 10 m2, r = 2 m , and L = 1.5m are used. Finally, Pm =
8759.279403mmHg, w = 1rad/s are used for the blood pressure model, and for the har-
monics, A1 = −7.13, A2 = −3.08, A3 = −0.130, A4 = −0.205, A5 = 0.0662, B1 =
4.64, B2 = −1.18, B3 = −0.564, B4 = −0.346, B5 = −0.120, all in mmHg.

First, in Figure 2, we compare the linear solution without growth and remodeling obtained
in [19] in comparison to both the analytical solution obtained by linearization of coupled
non-linear system with growth and remodeling (9) as well as the numerical solution to
(9) obtained via the implicit finite difference method. The figure shows that the inclusion
of growth and remodeling does have an effect even though the solution seems to have
the same shape. Their inclusion yields a decreased displacement of the outer wall which
seems to suggest that including elastin and collagen can help prevent rupture.

The Influence of length of unstrained tissues

Next, we wanted to investigate the effect of the length of the column where the CSF lives
on the displacement of the outer wall. As Figure 3 illustrates, we noted that as the length



Figure 2: Nonlinear Growth and Remodeling solution VS Linear Solutions

is reduced, the movement of the wall declines dramatically. Figure 3 illustrates the motion
of the wall for decreasing length from L = 1.5 m to L = 0.1 m. The results seem to agree
with what is expected intuitively.

Influence of Elastin and Collagen parameters

The elastic and collagen parameters (KE ,KC) seem to play an important role in the mod-
eling of the arterial wall since they are responsible for the elasticity and strength of wall
tissue. Figure 4 shows the solution for different values of KE starting from 300N/M till
800N/M while figure 5 represent the solution for different values of KC starting from
1.52N/M till 6.52N/M . Figure 4 suggests that the displacement increases and takes
longer to stabilize into a periodic motion as KE decreases. However, Figure 5 shows that
the displacement increases in a steady periodic motion as KC increases. Both these com-
putational observations seem to correspond to what has been observed in the literature.



Figure 3: Influence of Length of Unstrained Tissues

Conclusions and Future work

The model developed in this work studies the influence of growth and remodeling on the
rupture of an aneurysm In this model, three important components of aneurysm modeling
that were considered include the blood pressure,the CSF, and arterial wall. The specific
contribution of this paper was to expand on an earlier work to incorporate more relevant
features of the arterial wall to stimulate the complex biological structure of the human ar-
teries. The collagen and elastin are the most important fibers located in the wall layers that
are incorporated herein in the model of the wall. This new incorporation results in a new
nonlinear system that is solved numerically using implicit finite difference approximation
and Newton’s method for solving system of nonlinear equations. The results obtained in
this work is encouraging to understand and provides a better insight into the rupture of an
aneurysm. The model for the fluid considered herein is a linear model and we hope to ex-
pand our work to incorporate non-linearities in the fluid as well as develop similar models
in higher dimensions which are aspects that will be considered in forthcoming papers.



Figure 4: Influence of parameter kE on the displacement of the outer-wall
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