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Abstract

A parameter based set of third order iterative method and the semilocal convergence analysis
of this methods using majorizing sequence approach for solving nonlinear equations in Banach
spaces is investigated by Ezquerro and Hernandez [4]. This method is a weighted mean between
the Chebyshev and the Halley methods, the weight being α and 1−α, where α ∈ R. A conver-
gence theorem and corresponding error bounds provided. We have recurrence relation approach
to discuss the semilocal convergence of iterative methods. This is motivated us to discuss the
semilocal convergence. In this paper, mainly we focus on to discuss the semilocal convergence
of parameter based iterative method developed by [4] using recurrence relations approach under
the assumption that F ′′ is bounded and a punctual condition. Also, we established the R-order
of convergence and provided some a priori error bounds. Finally, we discuss some numerical
examples that where the Smale-like theorem fails but our bounded condition satisfy. We cal-
culate the existence and uniqueness region for the Numerical examples. Also, we calculate the
error bounds for parameter α = 0, 1, 2. We observed that the existence region obtained by our
approach is superior than Ezquerro and Hernandez [4] for each value of parameter α = 0, 1, 2.

Keywords: The Halley’s method, The Convex acceleration of Newton’s method, A Continua-
tion method, Banach space, Lipschitz condition, Fréchet derivative.
Introduction

Let F : Ω ⊆ X → Y be a nonlinear twice Fréchet differentiable operator in an open convex
domain Ω andX, Y Banach spaces. In many years passed, one of the main problem in numerical
analysis is to solve the nonlinear equation

F (x) = 0. (1)

Many scientific and engineering problems, Kinetic theory of gases, elasticity, applied math-
ematics can be brought in the form of a nonlinear equation (1) and solved by using iterative
methods. Newton in 1669 and Raphson in 1690 was proposed a procedure for solving nonlin-
ear equation (1). Now, this method is called Newton’s method or Newton-Raphson method and
it is a central technique for solving nonlinear equations. The Newton’s method is quadratically
convergent. Basic results concerning that the semilocal convergence of Newton’s method, the
error estimates and the existence and uniqueness of solution are given by Kantorovich theorem.
Kantrovich [9] established two different approaches to provide the proof of his theorem. Those
are majorizing sequences and recurrence relations approaches.

Methods using higher order derivatives may be advantageous for special types of problems, if
it is not particularly expensive to evaluate the involved derivatives in these methods. The well-
known third-order methods of this type are Chebyshev, the Halley and the Super-Halley meth-
ods. These methods are of third order and can be successfully applied to solve (1). We have



three different ways to study the convergence analysis of iterative methods. In the first tech-
nique, the convergence analysis have been studied under the assumption that first/second order
Fréchet derivative satisfies Lipschitz/Hölder/ω-continuity conditions. This type of convergence
analysis discussed by [2][3][7] using recurrence relations approach. This technique developed
by these authors is an extension of technique followed by kantorovich and other authors [9][12]
to study the Newton’s method. In second technique, Smale [13] obtained the convergence of
Newton’s method for analytic maps from data at one point instead of Lipschitz continuity con-
dition. Another technique is to discuss the convergence of (1) assume that F ′′ is bounded and
a punctual condition, instead of Lipschitz continuity condition. Gutierrez and Hernandez [8]
discussed the convergence analysis of third order iterative method under the assumption that F ′′

is bounded and a punctual condition.

Continuation, embedding or homotopy methods have long served as useful theoretical tools in
modern mathematics. According to the basic idea of continuation methods [10][1], a homotopy
αG(x) + (1 − α)H(x), where α ∈ [0, 1], can be defined between two operators G(x) and
H(x). Prashnath and Gupta [11] studied the semilocal convergence of continuation method
between the Chebyshev and the Super-Halley methods by using recurrence relations approach.
J.A.Ezquerro et.al [4][5][6] discussed the convergence analysis of continuation method between
different third order iterative methods namely the Chebyshev, the Halley and the Super-Halley
methods using majorizing sequence approach. Based on this idea, uniparametric family of
iteration between the Chebyshev and the Halley’s method derived by Ezquerro and Hernandez
[4] is

xα,n+1 = xα,n − [I + 1
2LF (xα,n)Gα(xα,n)]F ′(xα,n)−1F (xα,n)

Gα(xα,n) = I + α
2LF (xα,n)J(xα,n)

J(xα,n) = (I − 1
2LF (xα,n))−1

LF (xα,n) = F ′(xα,n)−1F ′′(xα,n)F ′(xα,n)−1F (xα,n).

 (2)

This method (2) is parameter based method of order three which contain both methods for spe-
cific choice of the parameter. For α = 0 the family mentioned above reduces to the Chebyshev
method and for α = 1 we get the Halley method. Ezquerro and Hernandez [4] discussed the
convergence of this method using majorizing sequence approach under the assumptions that the
second order Fréchet derivative satisfies Lipschitz continuity condition. Until now, we know
that convergence of these methods is established assuming that the second order derivative F ′′

satisfies a Lipschitz continuity condition.

The main goal of this paper is to discuss the semilocal convergence of (2) using recurrence
relation approach. We assume that F ′′ is bounded and a punctual condition instead of Lipschitz
continuity condition. An existence-uniqueness theorem is given. We have also derived a closed
form of error bounds in terms of parameter α ∈ R. We given some numerical applications to
demonstrate our approach.

We end this section briefly by describing the organization of this paper. Section 1, is the intro-
duction. In Section 2, the recurrence relations are derived. The a convergence theorem with the
existence and uniqueness ball and error estimates for the solution is established in Section 3. In
Section 4, two numerical examples are worked out to demonstrate the efficacy of our approach
and the results obtained are compared with the results obtained in [4]. Finally, conclusions from
the section 5.



Recurrence relations for the method

Let us suppose that Γα,0 = F ′(xα,0)−1 ∈ L(X, y) exists at some xα,0 ∈ Ω, where L(X, Y )
is the set of bounded linear operators from Y into X . Moreover, we assume that following
assumptions:

(i) ‖Γα,0‖ = ‖F ′(xα,0)−1‖ ≤ β,
(ii) ‖F ′(xα,0)−1F (xα,0)‖ ≤ η,
(iii) ‖F ′′(x)‖ ≤M, ∀ x ∈ Ω,

 (3)

Let us denote a = Mβη. Then for α ∈ R define the following real sequences for n = 0, 1, 2, . . .

a0 = 1, b0 = 1, c0 = a, d0 = (α− 1)a2 + 4
2(2− a)

an+1 = an
1− aandn

, bn+1 = aan+1d
2
n

2

[
1 + 4 + cn(2α− 4)− (α− 1)c2

n

(2 + cn + (α− 1)c2
n)2

]

cn+1 = aan+1bn+1, dn+1 =
(2 + cn+1 + (α− 1)c2

n+1
2− cn+1

)
bn+1.

Let {xα,n} a sequence of family. Based on these sequences, we now prove the following in-
equalities

(I) ‖Γα,n‖ = ‖F ′(xα,n)−1‖ ≤ anβ.

(II) ‖Γα,nF (xα,n)‖ ≤ bnη.

(III) ‖LF (xα,n)‖ ≤ cn.

(IV) ‖xα,n+1 − xα,n‖ ≤ dnη.

The conditions (I), (II) and (III) for n = 0 hold from the assumptions (i), (ii) and

‖LF (xα,0)‖ = ‖F ′(xα,0)−1F (xα,0)F ′(xα,0)−1F ′′(xα,0‖ ≤Mβη = a = c0 < 1.

Using Banach Lemma, this gives

‖(I − 1
2LF (xα,0))−1‖ ≤ 1

1− 1
2‖LF (xα,0)‖ = 1

1− c0
2

= 1
1− a

2
= 2

2− a.

From

Gα(xα,0) = I + α

2LF (xα,0)J(xα,0)

we get

‖Gα(xα,0)‖ ≤ 1 + α

2 ‖LF (xα,0)‖‖J(xα,0)‖ ≤ 2 + (α− 1)a
(2− a) .

Using (2) and condition (II) we get

‖xα,1 − xα,0‖ ≤
[4 + (α− 1)a2

2(2− a)

]
η ≤ d0η.



Hence, the condition (IV) also hold true for n = 0. Let us assume that the conditions (I)-(IV)
hold true for n = k. To prove that they also hold true for n = k + 1, we use xα,k ∈ Ω, ck < 1
and aakdk < 1 to get ‖I − Γα,kF ′(xα,k)‖ ≤ aakdk < 1. Now, by using Banach’s theorem, we
find that Γα,k+1 = F ′(xα,k+1)−1 exists and

‖Γα,k+1‖ ≤
‖Γα,k‖

1− ‖I − Γα,kF ′(xα,k‖

≤ akβ

1− aakdk
= ak+1β. (4)

Now from (2),

F (xα,k+1) =
∫ 1

0
[F ′(xα,k + t(xα,k+1 − xα,k))− F ′(xα,k)](xα,k+1 − xα,k)dt

−1
2F
′′(xα,k)F ′(xα,k)−1F (xα,k)Gα(xα,k)F ′(xα,k)−1F (xα,k)

From this,

‖F (xα,k+1)‖ ≤ Mη2d2
k

2 + Mη2b2
k(2 + (α− 1)ck)
2(2− ck)

(5)

and

‖Γα,k+1F (xα,k+1)‖ ≤ ‖Γα,k+1‖‖F (xα,k+1)‖

≤ ak+1βMη2
[
d2
k

2 + b2
k(2 + (α− 1)ck)

2(2− ck)

]

= aak+1d
2
k

2

[
1 + b2

k(2 + (α− 1)ck)
d2
k(2− ck)

]
η

= aak+1d
2
k

2

[
1 + 4 + ck(2α− 4)− (α− 1)c2

k

(2 + ck + (α− 1)c2
k)2

]
η

This gives

‖Γα,k+1F (xα,k+1)‖ ≤ bk+1η. (6)

Also from,

‖LF (xα,k+1)‖ ≤ ‖F ′(xα,k+1)−1‖‖F ′(xα,k+1)−1F (xα,k+1)‖‖F ′′(xα,k+1)‖
≤ ak+1βbk+1ηM = Mβηak+1bk+1 = aak+1bk+1

we get

‖LF (xα,k+1)‖ ≤ ck+1 (7)



Again using,

‖xα,k+2 − xα,k+1‖ ≤ [1 + 1
2‖LF (xα,k+1)‖‖Gα(xα,k+1)]‖Γα,k+1F (xα,k+1)‖

=
[2 + ck+1 + (α− 1)c2

k+1
(2− ck+1)

]
bk+1η

we get

‖xα,k+2 − xα,k+1‖ ≤ dk+1η. (8)

From (4),(6), (7) and (8) conclude that the conditions (I)-(IV) hold true for n = k + 1.
Convergence Analysis

In this section, discuss the properties of real sequences and establish a convergence theorem and
the existence and uniqueness region along with an estimation of the error bounds for the method
(2). First at all we give a technical lemma including the results concerning one and two variable
functions that we are going to need. We omit the proof to the reader could get it patiently but
without any difficulty.

Lemma 1 The following recurrence relation holds for the sequence {cn}.

cn+1 = c2
n

2

[
c4
n(α2 − 2α + 1) + c3

n(2α− 2) + c2
n(3α− 2) + 2cnα + 8

(2− 3cn − c2
n − (α− 1)c3

n)2

]

Lemma 2 Let a0 = 0.291481 be the smallest positive root of polynomial −2x6 + 5x5 + 8x4 −
22x3 − 10x2 + 32x− 8 = 0 and define the functions

h(x) = −2− 11a+ 10a2 + 6a3 − 4a4 +
√

4 + 76a− 111a2 + 52a3 − 8a4

2(a3 − a4) ,

H(x, y) = y4(x2 − 2x+ 1) + x3(2x− 2) + x2(3x− 2) + 2xy + 8
(2− 3y − y2 − (x− 1)y3)2 ,

gα(x) = (2− x)
2− 3x− x2 − (α− 1)x3 ,

fα(x) = 2 + x+ (α− 1)x2

(2− x) .

then

(i) h(x) is a decreasing function.

(ii) H(x, y) is increasing as a functions of y in (0, a0] and 0 ≤ x ≤ h(y).

(iii) fα(x) and gα(x) are increasing for all α ≥ 0.

Proof: This proof is simple then omitted for the readers.



Lemma 3 Let 0 < a ≤ a0 and 0 ≤ α ≤ h(a), then the sequence {cn} is decreasing.

Proof. This Lemma can be proved by induction. From Lemma 2, cn+1 ≤ cn if

cn
2

[
c4
n(α2 − 2α + 1) + c3

n(2α− 2) + c2
n(3α− 2) + 2cnα + 8

(2− 3cn − c2
n − (α− 1)c3

n)2

]
≤ 1, n ≥ 0

for n = 0, we get

a5(α2 − 2α + 1) + a4(2α− 2) + a3(3α− 2) + 2a2α + 8a ≤ 2(2− 3a− a2 − (α− 1)a3)2

This gives,

(−2a6 + a5)α2 + (4a6 − 6a5 − 10a4 + 11a3 + 2a2)α− 2a6 + 5a4 + 8a4 − 22a3 − 10a2 + 32a− 8 ≥ 0

This hold true for, 0 ≤ α ≤ h(a). Hence c1 ≤ c0. Let us assume that ck ≤ ck−1 . . . ≤ c1 ≤ c0.
Since, h(x) is a decreasing function, so that α ≤ h(a) = h(c0) ≤ h(ck). Hence, ck+1 ≤ ck.

Lemma 4 Under the hypothesis of Lemma ,aandn < 1 for n ≥ 0 and {an} is an increasing
sequence.

Proof. We have,

aandn = cn(2 + cn + (α− 1)c2
n)

(2− cn) .

Then, aandn < 1 if α < q(cn), where q(x) = (x3 − x2 − 3x + 2)/x3. As q(x) is decreasing
and cn ≤ c0, q(cn) ≥ q(c0). Besides, α < h(a) for a ∈ (0, a0]. Indeed q(a) − h(a) > 0.
Hence, aandn < 1 for n ≥ 0. Finally, a0 = 1, a1 = a0

1−aa0d0
> a0 = 1 and inductively,

an+1 = an/(1− aandn) ≥ an ≥ an−1 ≥ . . . ≥ a1 ≥ a0.

Lemma 5 Under the assumptions, 0 < a ≤ a0 and 0 ≤ α ≤ h(a). Then cn+1 ≤ γ2n c0
γ

, where
γ = c1/c0. Also the sequence {cn} converges to 0 and

∑∞
n=0 cn <∞.

Proof. First we prove the first part of Lemma. Let c1 = γc0, with γ < 1. We prove that
cn ≤ γcn−1 implies cn+1 ≤ γ2cn. From Lemma 1 we get

cn+1 = c2
n

2 H(α, cn) ≤ γ2c2
n−1
2 H(α, cn).

As H(α, y) is increasing in the second variable and cn < cn−1, we get

cn+1 = c2
n

2 H(α, cn) ≤ γ2cn.

Then we have cn+1 ≤ γ2n
cn and using this inequality, cn ≤ γ2n

c0/γ. As γ < 1, the first part
proved. The second part of the proof is simple and omitted for readers. Hence the Lemma is
proved.

Lemma 6 The sequence {an} is bounded above, that is, there exists a constant M > 0 such
that an ≤M ∀n ∈ N



Proof. From an+1 = an

1−aandn
and gα(cn) = (2−cn)

2−3cn−c2
n−(α−1)c3

n
which gives,

an+1 = an
[
1 + cngα(cn)

]
= Πn

k=0

[
1 + ckgα(ck)

]
Taking log on both sides, we get

log an+1 = Σn
k=0 log(1 + ckgα(ck)) ≤ Σn

k=0ckgα(ck) <∞.

Hence, {an} is a bounded sequence.

Lemma 7 The sequence {dn} is a cauchy sequence and satisfies the condition dn ≤ γ2n−1d0
for 0 < a ≤ a0.

Proof. From

dn = fα(cn) cn

aan
, where, fα(cn) = 2+cn+(α−1)c2

n

(2−cn) .

Since an > 1, so we get, dn ≤ cnfα(cn)/a ≤ γ2n−1d0 for γ < 1. Thus,the sequence {dn}
converges to 0. Hence it is a cauchy sequence.

Theorem 1 Let X and Y be two Banach spaces and let F : Ω ⊆ X → Y be a nonlinear twice
Fréchet differentiable on a non-empty open convex subset Ω. Assume that Γα,0 = F ′(xα,0)−1

exist at some xα,0 ∈ Ω and the assumptions (i)-(iii) are satisfied. Let us denote a0 = Mβη.
Suppose that 0 < a ≤ a0 = 0.291481 and 0 ≤ α ≤ h(a), where h(x) is the function defined in
Lemma 1. Then, if B(xα,0, rη) = {x ∈ X : ‖x− xα,0‖ ⊆ Ω, where, r = Σ∞n=0dn, the sequence
{xα,n} defined in (2) and starting at xα,0 converge to a solution x∗ of the equation (1). In this
case the solution x∗ and the iterates xα,n lies in B(xα,0, rη), and the solution x∗ is unique in
the open ball B(xα,0, 2/Mβ − rη). Further, the error estimate of the method in terms of real
sequence {dn} is given by

‖x∗ − xα,n+1‖ ≤
∞∑

k=n+1
dkη.

Proof. For 0 < a < a0, 0 ≤ α < h(a) and using above Lemmas, the sequence {xα,n} converge
to the solution. For α = h(a), we have cn = c0 = a, for n ≥ 0, From

an+1 = an
1− aandn

and

dn =
[2 + cn + (α− 1)c2

n

2− cn

]
cn
aan

we get

an+1 = an

[
1 + (2− c0)

2− 3c0 − c2
0 − (α− 1)c3

0

]



Taking, w =
[
1 + (2−c0)

2−3c0−c2
0−(α−1)c3

0

]
. This can be written as an+1 = wan = wn+1a0. Since

a0 = 1, this gives an+1 = wn+1 and

dn =
[2 + cn + (α− 1)c2

n

2− cn

]
cn
aan

=
[2 + c0 + (α− 1)c2

0
2− c0

]
c0

aa0

= 1
wn

[2 + c0 + (α− 1)c2
0

2− c0

]
c0

aa0

Hence, lim
n→∞

dn = 0. Thus, {dn} is a cauchy sequence. From condition (IV), we get {xα,n}
is also a cauchy sequence and hence there exists a x∗ such that lim

n→∞
xα,n = x∗. Now from the

equation (5) , we get

‖F (xα,n+1)‖ ≤ Mη2

2

[
d2
n + b2

n(2 + (α− 1)cn)
2− cn

]
, (9)

the limit of the sequence {bn} and {dn} is 0 and the continuity of F , we prove that F (x∗) = 0.
Thus, x∗ is a solution of equation (1). Also

‖xα,n+1 − x0‖ ≤ ‖xα,n+1 − xα,n‖+ ‖xα,n − xα,n−1‖+ ......+ ‖xα,1 − xα,0‖

≤
n∑
k=0

dkη

≤ rη

This gives xα,n ∈ B(xα,0, rη). Now taking limit as n→∞, we get ‖x∗−xα,0‖ ≤ rη and hence
x∗ ∈ B(xα,0, rη). Also for every m ≥ n+ 1, we get

‖xα,m − xα,n+1‖ ≤ ‖xα,m − xα,m−1‖+ ‖xα,m−1 − xα,m−2‖+ ....+ ‖xα,n+2 − xα,n+1‖

≤
∞∑

k=n+1
dkη < rη

by taking m→∞, we get ‖x∗ − xα,n+1‖ ≤
∞∑

k=n+1
dkη < rη.

To prove the uniqueness of the solution, if y∗ be the another solution of (1) then we have

0 = F (y∗)− F (x∗) =
∫ 1

0
F ′(x∗ + t(y∗ − x∗))dt(y∗ − x∗)

Clearly, y∗ = x∗, if
∫ 1

0 F
′(x∗ + t(y∗ − x∗))dt is invertible. This follows from

‖Γα,0‖‖
∫ 1

0
[F ′(x∗ + t(y∗ − x∗))− F ′(xα,0]dt‖ ≤ Mβ

∫ 1

0
‖x∗ + t(y∗ − x∗)− xα,0‖dt

≤ Mβ
∫ 1

0
(1− t)‖x∗ − xα,0‖+ t‖y∗ − xα,0‖dt

≤ Mβ

2 (rη + 2
k1β
− rη) = 1



and by Banach’s theorem. Thus, y∗ = x∗.
Numerical Examples

Example 1 Consider the function F (x) = 0, where,

F (x) = 9x7/3 + 4x2 − 36x+ 9, (10)

defined in X = [−1, 1] and initial approximation x0 = 0

Solution: From this, we observed that F (k)(x) does not defined at x0 for k ≥ 3. So Smale-like
condition do not work. Hence, Using the assumptions (i)-(iii) for the initial value x0 = 0, we
get β = 1/36, η = 1/4, and M = 36. Hence, a = Mβη = 0.25 < a0 and we can take the
real sequences defined in (2) for 0 ≤ α ≤ h(a) = 2.12382. We calculate the real sequences for
α = 0, α = 1 and α = 2 displayed in following Tables.

Table-1 : Real sequences for α = 0
n an bn cn dn

∑
dn

0 1.00000 1.00000 0.25000 1.12500 1.12500
1 1.39130 0.360978 0.125558 0.406302 1.53130
2 1.62029 0.0598264 0.024234 0.0612762 1.59258
3 1.66153 0.0015232 0.00063271 0.00152416 1.59410
4 1.66258 9.64964e-007 4.01083e-007 9.64964e-007 1.59410
5 1.66258 3.87031e-013 1.60868e-013 3.87031e-013 1.59410
6 1.66258 6.22607e-026 2.58784e-026 6.22607e-026 1.59410
7 1.66258 1.6112e-051 6.6969e-052 1.6112e-051 1.59410
8 1.66258 1.07901e-102 4.48484e-103 1.07901e-102 1.59410
9 1.66258 4.83917e-205 2.01138e-205 4.83917e-205 1.59410

10 1.66258 0. 0. 0. 1.59410

Table-2 : Real sequences for α = 1
n an bn cn dn

∑
dn

0 1. 1. 0.25000 1.14286 1.14286
1 1.40000 0.386596 0.135309 0.442702 1.58556
2 1.6567 0.0737824 0.0305588 0.0760721 1.66163
3 1.71059 0.00241948 0.00103469 0.00242198 1.66406
4 1.71237 2.50924e-006 1.07419e-006 2.50924e-006 1.66406
5 1.71237 2.6954e-012 1.15388e-012 2.6954e-012 1.66406
6 1.71237 3.11017e-024 1.33144e-024 3.11017e-024 1.66406
7 1.71237 4.141e-048 1.77273e-048 4.141e-048 1.66406
8 1.71059 7.34087e-096 3.14257e-096 7.34087e-096 1.66406
9 1.71237 2.30692e-191 9.87574e-192 2.30692e-191 1.66406

10 1.71237 0. 0. 0. 1.66406

Table-3 : Real sequences for α = 2



n an bn cn dn
∑
dn

0 1. 1. 0.25 1.16071 1.16071
1 1.40881 0.411943 0.145087 0.48106 1.64177
2 1.69619 0.0906748 0.0384504 0.0942979 1.73607
3 1.76684 0.00385091 0.00170098 0.00385747 1.73993
4 1.76986 6.57829e-006 2.91066e-006 6.5783e-006 1.73993
5 1.76986 1.91473e-011 8.472e-012 1.91473e-011 1.73993
6 1.76986 1.62216e-022 7.17749e-023 1.62216e-022 1.73993
7 1.76986 1.1643e-044 5.15163e-045 1.1643e-044 1.73993
8 1.76986 5.99805e-089 2.65393e-089 5.99805e-089 1.73993
9 1.76986 1.59184e-177 7.04334e-178 1.59184e-177 1.73993

10 1.76986 0. 0. 0. 1.73993

From Table-1 for α = 0 we get r = ∑
dn = 1.59410. So the existence and uniqueness

solution of (10) are B(x0,0, 0.398525) ⊆ Ω , B(x0,0, 1.60148)⋂Ω. From Table-2 for α = 1
we get r = ∑

dn = 1.66406. So the existence and uniqueness solution of (10)respectively
are B(x1,0, 0.416015) ⊆ Ω, B(x1,0, 1.58399)⋂Ω. From Table-3 for α = 2 we get r = ∑

dn =
1.73993. So the solution of (10) exists inB(x2,0, 0.434983) ⊆ Ω and unique inB(x2,0, 1.56502)⋂Ω.
However, solving (10) by using majorizing sequence [4], for α ∈ (−15, 2) we find that the so-
lution exists in the ball B(xα,0, 0.292893) ⊆ Ω and unique in B(xα,0, 1.70711)⋂Ω. From this
result, we can easily conclude that our existence region of solution is greater than the existence
region obtained by majorizing sequences. Also, we calculated error bounds by our approach
and with majorizing sequence approach [4] given in Table-4.

Table-4:Error bounds for α = 0 and α = 1

n α = 0 α = 1 α = 0 by [4] α = 1 by [4]
0 0.11727600 0.13030000 0.292893 0.292893
1 0.01570000 0.01962400 0.0144311 0.00717893
2 0.00038100 0.00060600 2.91523e-6 1.82202e-007
3 2.41241e-007 6.27312e-007 2.47752e-017 3.02432e-021
4 9.67577e-014 6.7385e-013 1.52073e-050 1.3831e-062
5 1.55652e-026 7.77542e-025 3.5169e-150 1.32291e-186
6 4.02801e-052 1.03525e-048 4.3498e-449 1.157605e-558

Example 2 Let X = C[0, 1] be the space of all continuous functions on the interval [0, 1] and
consider the H-equation called integral equation of Chandrasekhar

F (x)(s) = 1− x(s) + 1
4x(s)

∫ 1

0

s

s+ t
x(t)dt (11)

If we choose x0 = x0(s) = s and the norm ‖x‖ = maxs∈[0,1] |x(s)|. Then we get, M =
0.3465, β = 1.5304 and η = 0.2652. Hence, we get a = Mβη = 0.1406312 < a0. Also,
we can take the real sequence (2) for 0 ≤ α ≤ h(a) = 46.1089. The real sequences for
α = 0, α = 1 and α = 2 is given in following Table-5, Table-6 and Table-7. For α =
0, from the Table-5 the solution of (11) exists in the ball B(x0,0, 0.330869) and is unique in
the ball B(x0,0, 3.4407). For α = 1, from the Table-6 the solution of (11) exists in the ball
B(x1,0, 0.33407) and is unique in the ball B(x1,0, 3.4375). For α = 2, from the Table-7 the



solution of (11) exists in the ball B(x2,0, 0.337268) and is unique in the ball B(x2,0, 3.4343).
However, solving (11) by using majorizing sequence [4], for α ∈ (−15, 2 we find that the
solution exists in the ball B(xα,0, 0.287047) ⊆ Ω and is unique in B(x0, 3.48452). From this
result, we can easily conclude that our existence region of solution is greater than the existence
region obtained by majorizing sequences.

Table-5 : Real sequences for α = 0
n an bn cn dn

∑
dn

0 1.00000 1.00000 0.140631 1.07032 1.07032
1 1.17719 0.167709 0.0277641 0.172365 1.24268
2 1.21177 0.00492798 0.000839789 0.00493212 1.24762
3 1.21279 4.14542e-006 7.07026e-007 4.14543e-006 1.24762
4 1.21279 2.93093e-012 4.99887e-013 2.93093e-012 1.24762
5 1.21279 1.46513e-024 2.49887e-025 1.46513e-024 1.24762
6 1.21279 3.66117e-049 6.24435e-050 3.66117e-049 1.24762
7 1.21279 2.28616e-098 3.89919e-099 2.28616e-098 1.24762
8 1.21279 8.91419e-197 1.52037e-197 8.91419e-197 1.24762
9 1.21279 0. 0. 0. 1.24762

Table-6 : Real sequences for α = 1
n an bn cn dn

∑
dn

0 1.000000 1.000000 0.140631 1.07563 1.07563
1 1.17823 0.173644 0.028772 0.178713 1.25434
2 1.21418 0.00533859 0.000911574 0.00534346 1.25969
3 1.21529 4.87651e-006 8.33434e-007 4.87652e-006 1.25969
4 1.21529 4.06426e-012 6.94615e-013 4.06426e-012 1.25969
5 1.21529 2.8231e-024 4.8249e-025 2.8231e-024 1.25969
6 1.21529 1.36212e-048 2.32796e-049 1.36212e-048 1.25969
7 1.21529 3.17095e-097 5.41941e-098 3.17095e-097 1.25969
8 1.21529 1.71847e-194 2.937e-195 1.71847e-194 1.25969
9 1.21529 0. 0. 0. 1.25969

Table-7 : Real sequences for α = 2
n an bn cn dn

∑
dn

0 1. 1. 0.140631 1.08095 1.08095
1 1.17927 0.179515 0.029771 0.185021 1.26597
2 1.2166 0.00576852 0.0009869 0.005774 1.27175
3 1.2178 5.70729e-006 9.77435e-007 5.7073e-006 1.27175
4 1.2178 5.57852e-012 9.55382e-013 5.57852e-012 1.27175
5 1.2178 5.32961e-024 9.12754e-025 5.32961e-024 1.27175
6 1.2178 4.86462e-048 8.3312e-049 4.86462e-048 1.27175
7 1.2178 4.05281e-096 6.94088e-097 4.05281e-096 1.27175
8 1.2178 2.81301e-192 4.81759e-193 2.81301e-192 1.27175
9 1.2178 0. 0. 0. 1.27175

Conclusions

In this paper, we discussed the semilocal convergence of parameter based iterative method under
the assumption that second order Fréchet derivative satisfies bounded condition instead of Lip-
schitz continuity condition. The analysis discussed using recurrence relation approach. Based



on this approach, the existence and uniqueness region with priori error bounds established. Fi-
nally, Numerical examples are worked out to demonstrate our approach. we observed that our
approach have more superior error bounds than the other approach [4].
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