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Abstract

In this study, we design a new efficient families of sixth-order iterative methods for solving
scalar as well as system of nonlinear equations. The main beauty of the proposed family is that
we have to calculate only one inverse of the Jacobian matrix in the case of nonlinear system
which reduce the computational cost. The convergence properties are fully investigated along
with two main theorems describing their order of convergence. In addition, we also presented
a numerical work which confirm the order of convergence of the proposed family is well de-
duced for scalar as well as system of nonlinear equations. Further, we have also shown the the
implementation of the proposed techniques on real world problems like, Van der Pol equation,
Hammerstein integral equation, etc.

Keywords: Nonlinear equations and systems, iterative methods, Newton’s method, order of
convergence.
Introduction

Construction of higher-order multi-point iterative methods which provide the accurate and effi-
cient approximate solution to the form of

F (x) = 0, (1)

(where F : I ⊂ Rn → Rn is a univariate function when n = 1 or multivariate function when
n > 1 on an open domain I .) is one of the most basic and important problem of the numerical
analysis.

The reason behind the importance of this topic is the applicability of these iterative methods
in the real world and applied science problems. In the literature, we can find several examples
where we can see the applicability of these iterative methods to the real world problems and
nonlinear models can be transformed in to the system of nonlinear equations. For example,
More presented the set nonlinear model like variational inequalities, the Bratu problem, a shal-
low arch, etc. in his paper [17]. However, most of them are pharased in the terms of system
of nonlinear equations of the form (1). Recently, Rangan et al. [23] discussed the applicability
of the nonlinear system on the problem of investigating coarse-grained dynamical properties
of neuronal networks in kinetic theory. In addition, Nejat and Ollivier-Gooch [18] presented
the problem to study the effect of discretization order on preconditioning and convergence of
high-order Newton-Krylor unstructured flow solver in computational fluid dynamics. On the
other hand, Grosan and Abraham [11], also shown the applicability of the system of nonlinear
equations in neurophysiology, kinematics syntheses problem, chemical equilibrium problem,
combustion problem and economics modeling problem. Very recently, Awawdeh [3] and Tsou-
los and Stavrakoudis [29], solved the reactor and steering problems by phrasing them in the



system of nonlinear equations. Moreover, Lin et al. [16] also discussed the applicability of the
system of nonlinear equations in transport theory.

There are two main ways to develop new iterative methods for system of nonlinear equations.
Firstly, researchers proposed new iterative methods in order to approximate the zeros of uni-
variate function. Then, they tried to extend the same scheme to the multidimensional case pre-
serving the same order of convergence. For example, Cordero et al. [5], proposed the extension
of the classical fourth-order Jarratt’s method [13] for scalar equations to system of nonlinear
equations. In addition, Abad et al. [1], Cordero et al. [6], Ren et al. [24] and Wang et al. [30],
proposed some higher-order extension for systems of nonlinear equations of the previously pub-
lished work for the scalar equations. Moreover, Sharma and Arora [25] and Hueso et al. [12],
also proposed the extension of higher-order Jarratt like method for scalar equation to nonlinear
system. We can say that it is one of simple way to develop new scheme for system of nonlinear
equations. But, it is not always possible to retain the same order of convergence and the same
form of body structure. One of the main reason behind this is that in the case of scalar func-
tional evaluation of the involved function and its derivative consume the same computational
cost. However, this is not true in the multidimensional case.

Secondly, researchers tried some other approaches and procedures to develop new and higher-
order methods for system of nonlinear equations. In 2010, Sharma et al. [26] proposed fourth
and six-order iterative methods based on weighted-Newton iteration. On the other hand, Arti-
diello et al. [2] proposed fourth-order methods based on the weight function approach. More-
over, Noor et al. [19] also presented several higher-order iterative methods for system of non-
linear with the aid of decomposition technique. We can also use the different approaches like
quadrature formulae, Adomian polynomial, divided difference approach, etc. for constructing
iterative schemes to solve nonlinear systems. For the details of the other approaches one refers
some standard text books [20, 22, 28].

In the earlier proposed schemes by some scholars like Ren et al. [24], Alicia et al. [5], Sharama
and Arora [25], Noor et al. [19], Artidiello et al. [2] and Hueso et al. [12], required the
evaluation of more than one inverse Jacobian matrix. It is not an easy task to find the inverse
of the complicated Jacobian matrix because it requires a lot of computational work. Therefore,
we need the higher-order families of iterative methods which require only one evaluation of the
Jacobian matrix. Because, it will be very beneficial from the computational point of view.

The principal aim of this study is to propose a new efficient family of sixth-order iterative
methods which required only one inverse of the Jacobian matrix for the system of nonlinear
equations. Therefore, we propose firstly a new family of sixth-order iterative methods for a
scalar equation. Then, we extend this family for the multidimensional case preserving the same
order of convergence. The convergence behavior of the proposed methods is tested on a concrete
variety of nonlinear equations with same initial guess as other scholars mentioned in their own
papers (for the more details please see the section 4). Further, we observed that our proposed
methods perform better than the existing ones. Further, we have also shown the applicability of
our proposed schemes in the multidimensional case on some real world problems like, Van der
pol equation, Hammerstein integral equations and etc.



Development of the scheme for scalar equations

In this section, we propose a new sixth-order family of iterative methods, which is defined as
follows:

yn = xn −
2
3
f(xn)
f ′(xn) ,

zn = xn −

θ1 + θ2
f ′(yn)
f ′(xn) + θ3

(
f ′(yn)
f ′(xn)

)2
 f(xn)
f ′(xn) ,

xn+1 = zn −

θ4 + θ5
f ′(yn)
f ′(xn) + θ6

(
f ′(yn)
f ′(xn)

)2
 f(zn)
f ′(xn) ,

(2)

where θi ∈ R, i = 1, 2, . . . , 6 are free disposable parameters. The following result demon-
strates that the order of convergence reaches sixth-order with some conditions on the disposable
parameters.

Theorem 1 Let f : I ⊆ R → R be a sufficiently differentiable function in an interval D
containing a simple root α of the equation f(x) = 0. Further, we also assume that an initial
guess x0 is sufficiently close to α. Then, the family of iterative methods (2) reaches a sixth-order
convergence when

θ1 = θ3 + 7
4 , θ2 = −2θ3 −

3
4 , θ3 = 9

8 , θ4 = 1− θ5 − θ6, θ5 = −2θ6 −
3
2 , (3)

where θ6 ∈ R, is a free disposable parameter.

Proof. Let us assume that en = xn − α be the error in the nth iteration. Further, let us also
expand the functions f(xn) and it’s first order derivative f ′(xn) around the point x = α by using
Taylor’s series expansion with the assumption f ′(α) 6= 0, which are defined as follows:

f(xn) = f ′(α)
(
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n +O(e7

n)
)
, (4)

where ck = f (k)(α)
k!f ′(α) for k = 2, 3, . . . and

f ′(xn) = f ′(α)
(
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n +O(e7

n)
)
, (5)

respectively.
With the aid of the expressions (4) and (5), we get

f(xn)
f ′(xn) = en − c2e

2
n + 2(c2

2 − c3)e3
n − (4c3

2 − 7c3c2 + 3c4)e4
n + (8c4

2 − 20c3c
2
2 + 10c4c2 + 6c2

3

− 4c5)e5
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(
52c3c

3
2 − 16c5

2 − 28c4c
2
2 +

(
13c5 − 33c2

3

)
c2 + 17c3c4 − 5c6

)
e6
n +O(e7

n).
(6)

By inserting the above expression (6) in the first sub step of scheme (2), we further obtain

yn − α = 1
3en + 1

3c2e
2
n −

4
3(c2

2 − c3)e3
n + 2

3(4c3
2 − 7c3c2 + 3c4)e4

n −
4
3

(
4c4

2 − 10c3c
2
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3
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3
(
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2
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)
e6
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(7)



Now, we expand the Taylor series expansion of the function f ′(yn) = f ′
(
xn − 2

3
f(xn)
f ′(xn)

)
about

the point x = α by using (6), which is given as follows:

f ′(yn) = f ′(α)
[
1 + 2c2en

3 + 1
3
(
4c2

2 + c3
)
e2
n +

4∑
i=1

Pie
i+2
n +O(e7

n)
]
, (8)

where Pi = Pi(c2, c3, . . . , c6).
Now, by using the above expressions namely, (4), (5), (6) and (8) in the second sub step, we get

zn − α = (1− θ1 − θ2 − θ3)en + 1
3c2(3θ1 + 7θ2 + 11θ3)e2

n +
4∑
l=1

Qje
j+2
n +O(e7

n), (9)

where Qj = Qj(θ1, θ2, θ3, c2, c3, . . . , c6).
It is clear from the above equation that for obtaining at least cubic convergence the coefficient
of en and e2

n should be zero simultaneously. Therefore, we have

θ1 = θ3 + 7
4 , θ2 = −2θ3 −

3
4 . (10)

Using the above values of θ1 and θ2 in Q1 = 0, we obtain the following independent relation

8θ3 − 9 = 0, (11)

which further yields

θ3 = 9
8 . (12)

By inserting the values of θ1, θ2 and θ3, in the expression (9), we get

zn − α =
(

5c3
2 − c3c2 + c4

9

)
e4
n +

(
−36c4

2 + 32c3c
2
2 −

20c4c2

9 − 2c2
3 + 8c5

27

)
e5
n

+ 2
27
(
2295c5

2 − 3537c3c
3
2 + 633c4c

2
2 + 9

(
99c2

3 − 5c5
)
c2 − 99c3c4 + 7c6

)
e6
n +O(e7

n).
(13)

In this way, we obtain a new optimal fourth-order iterative method. In order to obtain sixth-
order convergent family of iterative methods, we expand the Taylor’s series expansion of the
function f(zn) about a point x = α with the aid of expression (13), we obtain

f(zn) = f ′(α)
[(

5c3
2 − c3c2 + c4

9

)
e4
n +

(
−36c4

2 + 32c3c
2
2 −

20c4c2
9 − 2c2

3 + 8c5
27

)
e5
n

+ 2
27
(
2295c5
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3
2 + 633c4c

2
2 + 9

(
99c2

3 − 5c5
)
c2 − 99c3c4 + 7c6

)
e6
n +O(e7

n)
]
.

(14)
By using the equations (4), (5), (8), (13) and (14), in the last sub step of (2), we obtain

en+1 = −1
9(45c3

2 − 9c3c2 + c4)(θ4 + θ5 + θ6 − 1)e4
n +

2∑
l=1

Rle
l+4
n +O(e7

n), (15)

where Rl = Rl(θ4, θ5, θ6, c2, c3, . . . , c6).
In order to obtain at least fifth-order of convergence, we have to substitute the following value
of the disposable parameter θ4

θ4 = −θ5 − θ6 + 1. (16)



Now, we will use the above value of θ4 in R1 = 0, we have

2θ5 + 4θ6 + 3 = 0, (17)

which further yields

θ5 = −2θ6 −
3
2 . (18)

By using the values of θ4 and θ5 in the expression (15), we get

en+1 = − 1
81(45c3

2 − 9c3c2 + c4)
(
2c2

2(8θ6 − 27) + 9c3
)
e6
n +O(e7

n), θ6 ∈ R. (19)

Hence, it is straightforward to say from the above error equation that the proposed scheme (2)
reaches the sixth-order convergence. This completes the proof. �

Development of the scheme for multi-dimensional case

The previous scheme (2) for scalar equation can be written for the multi-dimensional case as
follows:

y(n) = x(n) − 2
3F
′(x(n))−1F (x(n)),

z(n) = y(n) −
[
θ1I + θ2F

′(x(n))−1F ′(y(n)) + θ3
(
F ′(x(n))−1F ′(y(n))

)−2
]
F ′(x(n))−1F (x(n)),

x(n+1) = z(n) −
[
θ4I + θ5F

′(x(n))−1F ′(y(n)) + θ6
(
F ′(x(n))−1F ′(y(n))

)−2
]
F ′(x(n))−1F (z(n)),

(20)
where I is the identity matrix of order n and θi, i = 1, 2, . . . , 6 are free disposable parameters.
With the values of the parameters obtained in Theorem 1 we design a parametric family of sixth-
order iterative methods for solving nonlinear systems as shows the following theorem. In the
proof of this result we use the tools and procedure introduced in [5].

Theorem 2 Let F : D ⊆ Rn → Rn be a sufficiently differentiable function in an open neigh-
borhood D of its zero α. Suppose that F ′(x) is continuous and nonsingular in α and the initial
guess x(0) is close enough to α. Then, the iterative schemes defined by (20) have order of
convergence six when

θ1 = θ3 + 7
4 , θ2 = −2θ3 −

3
4 , θ3 = 9

8 , θ4 = 1− θ5 − θ6, θ5 = −2θ6 −
3
2 ,

where θ6 is a free disposable parameter.

Proof. Let us assume that e(n) = x(n)−α be the error in the nth-iteration. Further, by developing
F (x(n)) in a neighborhood of α, we have

F (x(n)) = F ′(α)
[
e(n) + C2(e(n))2 + C3(e(n))3

]
+O((e(n))4), (21)

Ck = 1
k!F

′(α)−1F (k)(α), k ≥ 2.
Similarly, we obtain

F ′(x(n)) = F ′(α)
[
I + 2C2e

(n) + 3C3(e(n))2 + 4C4(e(n))3
]

+O((e(n))4). (22)



By using the above expression (22), we further obtain

F ′(x(n))−1 =
[
I − 2C2e

(n) + (4C2
2 − 3C3)(e(n))2

]
F ′(α)−1 +O((e(n))3), (23)

With the help of equation (21) and (23), we have

F ′(x(n))−1F (x(n)) = e(n) − C2(e(n))2 + 2
(
C2

2 − C3
)

(e(n))3 +O((e(n))4), (24)

By using the above expression (24) in the first step of (20), we get

y(n) − α = 1
3e

(n) + 2
3C2(e(n))2 − 2

3(2C2
2 − 2C3)(e(n))3 +O((e(n))4). (25)

With aid of the expression (25), we further obtain

F ′(y(n)) = F ′(α)
[
I + 4

3C2e
(n) + 1

3(4C2
2 + C3)(e(n))2

]
+O((e(n))3) (26)

By using the equations (23) and (26), we further yield

F ′(x(n))−1F ′(y(n)) = I − 4C2

3 e(n) +
(

4C2
2 −

8C3

3

)
(e(n))2

− 8
27(36C3

2 − 45C3C2 + 13C4)(e(n))3 +O((e(n))4).
(27)

By using equations (24), (27) and the values of disposable parameters θ1, θ2 and θ3, in the
second sub step of the scheme (20), we obtain

z(n) − α = A1(e(n))4 + A2(e(n))5 +O((e(n))6), (28)

where A1 and A2 depend on constants Cj .

Now, we want to prove that the proposed scheme will reach sixth-order convergence when we
will use the previous values of the disposable parameters (which are mentioned in the previous
theorem). For this, we develop F (z(n)) in a neighborhood of α

F (z(n)) = F ′(α)
[
A1(e(n))4 + A2(e(n))5

]
+O((e(n))6). (29)

With the aid of expressions (23), (24), (27), (29) and the values of disposable parameters θ4 and
θ5 (which are display in the previous theorem), we have[(

θ6 + 5
2

)
I +

(
−2θ6 −

3
2

)
F ′(x(n))−1F ′(y(n)) + θ6

(
F ′(x(n))−1F ′(y(n))

)−2
]
F ′(x(n))−1F (z(n))

= A1(e(n))4 +A2(e(n))5 + A1
9
(
2C2

2 (8θ6 − 27) + 9C3
)

(e(n))6 +O((e(n))7)
(30)

Finally, by using (28) and (29) in the last sub step of the proposed scheme (20), we obtain

x(n+1) − α = z(n) − α−
[
A1(e(n))4 +A2(e(n))5 + A1

9
(
2C2

2 (8θ6 − 27) + 9C3
)

(e(n))6 +O((e(n))7)
]

= A1
9
(
2C2

2 (8θ6 − 27) + 9C3
)

(e(n))6 +O((e(n))7).
(31)

Therefore, (20) is a new family of sixth-order iterative methods. �



Numerical experiments

This section is devoted to verify the convergence behavior and computational efficiency of
the proposed family of iterative methods which we have proposed in the earlier sections.

Most of the times, some researchers who want to claim that their methods are superior than
other existing methods available in the literature. They consider some well-known or standard
or self-made examples and manipulate the initial approximations to claim that their methods
are superior than other methods. To halt this practice, we consider six numerical examples; first
one is chosen from Guem et al. [7]; second one is chosen from Grau and Dı́az-Barrero [8];
third one is chosen from Parhi and Gupta [21], fourth one is chosen from Soleymani [27] and
fifth one is consider from Ren et al. [24], with same initial guesses which are mentioned in their
papers. Further, we also want to see what will happen if we consider different examples and with
different initial guesses, which are not mentioned in their papers. Therefore, we consider one
more nonlinear equation from Behl et al. [14]. The details of chosen examples or test functions
are available in Table 1. Moreover, the considered test functions with their corresponding zeros
and initial guesses are also displayed in the same table.

Now, we employ the new sixth-order scheme (2)
(
for θ6 = 0, 27

8 and θ6 = 55
16

)
denoted by

(PM1), (PM2) and (PM3), respectively to see the convergence behavior and effectiveness.
We shall compare our methods with a higher-order family of double-Newton methods with a
bivariate weighting function that is very recently presented by Guem et al. [7], out of them we
choose one of their best method (3.8), called by (GKN). In addition, we consider a sixth-order
variants of Ostrowski’s method proposed by Grau and Dı́az-Barrero [8], out of them we choose
expression (4–6), described as (GB). Further, we also compare them with a sixth-order multi-
point iterative method (2.7) proposed by Parhi and Gupta [21], called by (PG). Moreover, we
will compare them with a sixth-order Jarratt method presented by Soleymani [27], out of which
we consider method (10), denoted by (SM). Finally, we also compared our methods with some
new sixth-order variants of Jarratt’s method designed by Ren et al. [24], out of them we choose
method (54) (for α = 5

10 , β = 12
10 , γ = 2

10 , δ = 2
10 ), described as (RWB).

For better comparisons of our proposed methods, we have displayed the errors between the two
consecutive iterations |xn+1 − xn|, the estimation of the computational order of convergence
ρ = log |(xn−xn)/(xn−1−xn−2)|

log |(xn−1−xn−2)/(xn−2−xn−3)| or log |(xn−α)/(xn−1−α)|
log |(xn−1−α)/(xn−2−α)| and residual error of the corresponding

function (|f(xn)|), corresponding to each test function in Tables 2 and 3.

Further, we also consider a variety of applied examples to further check the validity of theo-
retical results for nonlinear system. Therefore, we employ the new sixth-order scheme (20) for
θ6 = 0, 27

8 and θ6 = 55
16 denoted by (P̂M1), (P̂M2) and (P̂M3), respectively, to verify the

performance of these methods on the examples 1–3. We shall compare them with a fourth-
order Jarratt’s method [5] for system of nonlinear equations, denoted by (JM). In addition, we
shall compare them with a method (61) that is recently presented by Ren et al. [24], denoted
by (RWB). Further, we also compared our methods with Ostrowski type methods for solving
systems of nonlinear equations designed by Grau et al. [9], out of them we consider methods
namely, method (5) and method (7), denoted by (GM1) and (GM2), respectively. Moreover, we
also compared our methods with sixth-order family of iterative method designed by Cordero et
al. [5], out of them we choose method (6), denoted by (CM). Finally, we compare our methods
with an efficient Jarratt-like methods presented by Sharma [25], we consider method (13) called
by (SA).
In the following Tables 4, 5, 7–10, we have displayed the error between two consecutive error in



the iterations ‖x(n+1)−x(n)‖, the computational order of convergence ρ = log[‖x(n+1)−x(n)‖/‖x(n)−x(n−1)‖]
log[‖x(n)−x(n−1)‖/‖x(n−1)−x(n−2)‖]

and residual error of the corresponding function (‖F (x(n))‖).
During the current numerical experiments with programming language Mathematica (Version
9), all computations have been done with multiple precision arithmetic with 1000 digits of
mantissa, which minimize round-off errors. Let us remark that, in all tables, a e(±b) denotes
a× 10(±b).

Table 1: Test problems

f(x) Zeros(α) x0

f1(x) = 2 cos(x2)− log(1 + 4x2 − π)−
√

2; [7]
√

π
4 1

f2(x) =
[
1 + (1− γ)4]x− (1− γx)4 [γ = 5]; [8] 0.003617108178904063540768351 . . . 0.05

f3(x) = x2 − ex − 3x+ 2; [21] 0.2575302854398607604553673 . . . 2
f4(x) = tan x; [27] 0 1.2
f5(x) = e−x + cosx; [24] 1.746139530408012417650703 . . . 2
f6(x) = x3 + sin x+ 2x; [14] 0 1

Table 2: Comparison of |xn+1 − xn| for the functions fi(x), i = 1, 2, . . . , 6 among listed methods

fi x0 |xn+1 − xn| GKN GB PG SM RWB PM1 PM2 PM3
\ρ

f1 1
|x2 − x1| 1.3e(−4) 1.5e(−5) 1.2e(−4) 1.1e(−5) 9.7e(−6) 2.4e(−6) 2.0e(−5) 2.0e(−5)
|x3 − x2| 1.1e(−28) 3.2e(−28) 7.7e(−22) 1.9e(−28) 5.1e(−29) 3.2e(−32) 1.1e(−26) 1.3e(−26)
|x4 − x3| 3.1e(−167) 3.7e(−164) 6.4e(−125) 3.6e(−165) 9.9e(−169) 2.1e(−187) 3.5e(−154) 9.4e(−154)

ρ 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

f2 0.05
|x2 − x1| 8.0e(−9) 6.8e(−9) 1.6e(−8) 5.0e(−9) 4.5e(−9) 3.0e(−106) 7.9e(−10) 7.9e(−10)
|x3 − x2| 3.5e(−49) 9.3e(−50) 4.5e(−47) 1.8e(−50) 8.4e(−51) 4.1e(−60) 1.6e(−56) 1.8e(−56)
|x4 − x3| 2.6e(−291) 6.3e(−295) 2.2e(−278) 4.5e(−299) 3.3e(−301) 2.3e(−359) 1.3e(−336) 2.2e(−336)

ρ 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

f3 2
|x2 − x1| 3.5e(−2) 9.4e(−2) 7.6e(−2) 9.8e(−15) 3.4e(−1) 5.2e(−3) 1.4e(−2) 1.5e(−2)
|x3 − x2| 9.3e(−13) 1.4e(−10) 9.2e(−11) 1.8e(−4) 5.4e(−7) 3.1e(−19) 13e(−15) 1.5e(−15)
|x4 − x3| 3.2e(−76) 1.1e(−63) 2.9e(−64) 1.4e(−26) 9.0e(−42) 1.3e(−116) 7.5e(−94) 2.1e(−93)

ρ 6.0005 6.0054 6.0004 5.9147 6.0008 6.0039 5.9979 5.9979

f4 1.2
|x2 − x1| 2.7e(−1) 6.4e(−1) 4.4e(−1) 3.4e(−1) 3.7e(−1) 4.2e(−1) 3.2e(−1) 3.2e(−1)
|x3 − x2| 6.0e(−6) 3.5e(−3) 3.4e(−4) 4.8e(−5) 7.6e(−5) 7.3e(−7) 9.7e(−6) 9.6e(−6)
|x4 − x3| 1.6e(−38) 5.0e(−19) 4.3e(−26) 3.6e(−32) 9.1e(−31) 6.9e(−45) 5.1e(−37) 4.6e(−37)

ρ 7.0150 7.0180 7.0244 7.0436 7.0359 6.6011 6.9218 6.9244

f5 2.0
|x2 − x1| 2.9e(−6) 1.9e(−6) 4.9e(−7) 6.1e(−7) 1.0e(−6) 1.e(−5) 8.2e(−7) 6.5e(−7)
|x3 − x2| 9.2e(−37) 1.9e(−37) 2.2e(−41) 9.2e(−41) 3.0e(−39) 1.2e(−32) 1.3e(−39) 2.8e(−40)
|x4 − x3| 9.4e(−220) 1.4e(−223) 2.2e(−247) 1.1e(−243) 1.9e(−234) 2.1e(−194) 1.6e(−236) 2.1e(−240)

ρ 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

f6 1
|x2 − x1| 3.7e(−3) 1.8e(−3) 1.8e(−2) 4.3e(−2) 1.8e(−2) 1.0e(−2) 2.2e(−4) 4.1e(−4)
|x3 − x2| 2.9e(−19) 3.1e(−21) 3.1e(−14) 1.1e(−11) 2.4e(−14) 4.7e(−16) 9.2e(−28) 7.9e(−26)
|x4 − x3| 5.3e(−132) 1.3e(−145) 1.3e(−96) 1.1e(−78) 2.2e(−97) 2.0e(−109) 2.3e(−191) 8.0e(−178)

ρ 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000



Table 3: Comparison of resiual error |f(xn)| in among listed methods

fi x0 |xn+1 − xn| GKN GB PG SM RWB PM1 PM2 PM3

\ρ

f1 1
|f(x1)| 1.3e(−5) 1.4e(−4) 1.1e(−3) 1.1e(−4) 9.3e(−5) 2.3e(−5) 1.9e(−4) 2.0e(−4)
|f(x2)| 1.0e(−27) 3.1e(−27) 7.4e(−21) 1.8e(−27) 4.8e(−28) 3.1e(−31) 1.1e(−25) 1.3e(−25)
|f(x3)| 3.0e(−166) 3.6e(−163) 6.1e(−124) 3.4e(−164) 9.5e(−168) 2.0e(−186) 3.3e(−153) 9.0e(−153)

f2 0.05
|f(x1)| 2.2e(−6) 1.9e(−6) 4.5e(−6) 1.4e(−6) 1.3e(−6) 8.4e(−8) 2.2e(−7) 2.2e(−7)
|f(x2)| 9.7e(−47) 2.6e(−47) 1.3e(−44) 5.1e(−48) 2.3e(−48) 1.1e(−57) 4.5e(−54) 4.9e(−54)
|f(x3)| 7.1e(−289) 1.7e(−292) 6.1e(−276) 1.2e(−296) 9.1e(−299) 6.4e(−357) 3.7e(−334) 6.2e(−334)

f3 2
|f(x1)| 1.3e(−1) 3.5e(−1) 2.9e(−1) 4.2 1.3 2.0e(−2) 5.4e(−2) 5.5e(−2)
|f(x2)| 3.5e(−12) 5.2e(−10) 3.5e(−10) 6.8e(−4) 2.1e(−6) 1.2e(−8) 4.9e(−15) 5.8e(−15)
|f(x3)| 1.2e(−75) 4.3e(−63) 1.1e(−63) 5.1e(−26) 3.4e(−41) 4.8e(−116) 2.8e(−93) 7.8e(−93)

f4 1.2
|f(x1)| 2.7e(−1) 7.5e(−1) 4.8e(−1) 3.6e(−1) 3.9e(−1) 4.5e(−1) 3.3e(−1) 3.3e(−1)
|f(x2)| 6.0e(−6) 3.5e(−3) 3.4e(−4) 4.8e(−5) 7.6e(−5) 7.3e(−7) 9.7e(−6) 9.6e(−6)
|f(x3)| 1.6e(−38) 5.0e(−19) 4.3e(−26) 3.6e(−32) 9.1e(−31) 6.9e(−45) 5.1e(−37) 4.6e(−37)

f5 2.0
|f(x1)| 3.4e(−6) 2.3e(−6) 5.6e(−7) 7.0e(−7) 1.2e(−6) 1.2e(−5) 9.6e(−7) 7.5e(−7)
|f(x2)| 1.1e(−36) 2.1e(−37) 2.6e(−41) 1.1e(−40) 3.5e(−39) 1.3e(−32) 1.5e(−39) 3.3e(−40)
|f(x3)| 1.1e(−219) 1.6e(−223) 2.5e(−247) 1.3e(−243) 2.2e(−234) 2.5e(−194) 1.9e(−236) 2.4e(−240)

f6 1
|f(x1)| 1.1e(−2) 5.5e(−3) 5.4e(−2) 1.3e(−1) 5.3e(−2) 3.0e(−2) 6.5e(−4) 1.2e(−4)
|f(x2)| 8.7e(−9) 9.4e(−21) 9.3e(−14) 3.4e(−11) 7.3e(−14) 1.4e(−35) 2.8e(−27) 2.8e(−27)
|f(x3)| 1.6e(−131) 3.8e(−145) 4.0e(−96) 3.2e(−78) 6.6e(−7) 6.1e(−109) 7.0e(−191) 2.4e(−177)

Example 1 Let us consider the Van der Pol equation [4, 19], which is defined as follows:

y′′ − µ(y2 − 1)y′ + y = 0, µ > 0, (32)

which governs the flow of current in a vacuum tube, with the boundary conditions y(0) =
0, y(2) = 1. Further, we consider the partition of the given interval [0, 2], which is given by

x0 = 0 < x1 < x2 < x3 < · · · < xn, where xi = x0 + ih, h = 2
n
.

Moreover, we assume that

y0 = y(x0) = 0, y1 = y(x1), . . . , yn−1 = y(xn−1), yn = y(xn) = 1.

If, we discretized the above problem (32) by using the numerical formula for the first derivative
and second derivative, which are given by

y′k = yk+1 − yk−1

2h , y′′k = yk−1 − 2yk + yk+1

2h , k = 1, 2, . . . , n− 1,

then, we obtain a (n− 1)× (n− 1) system of nonlinear equations

2h2xk − hµ
(
x2
k − 1

)
(xk+1 − xk−1) + 2 (xk−1 + xk+1 − 2xk) = 0.

Let us consider µ = 1
2 and initial approximation y(0)

k =
(

1
2 ,

1
2 , . . . ,

1
2

)
. In this problem, we

consider the value of n = 7 so that we can obtain a 6 × 6 system of nonlinear equations. The



Table 4: (Comparison of ‖x(n+1) − x(n)‖ among listed methods in the Van der Pol equation )

‖x(n+1) − x(n)‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

\ρ

‖x(2) − x(1)‖ 1.4e(−3) 1.7e(−5) 7.0e(−4) 7..7e(−4) 1.7e(−5) 8.5e(−5) 6.4e(−5) 1.7e(−5) 1.5e(−5)

‖x(3) − x(2)‖ 3.0e(−15) 2.2e(−34) 4.4e(−17)6.5e(−17) 2.2e(−34) 1.1e(−29) 2.0e(−30) 2.2e(−34) 1.4e(−34)

‖x(4) − x(3)‖ 1.2e(−61)7.9e(−208)9.3e(−70)4.8e(−69)7.9e(−208)2.8e(−179)6.3e(−183)2.3e(−206)9.3e(−208)

ρ 3.9826 6.0017 3.9883 3.9874 6.0017 6.0153 5.9768 5.9551 5.9989

Table 5: (Comparison of residual error ‖F (x(n))‖ among listed methods in the Van der Pol equation )

‖F (x(n))‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

‖F (x1))‖ 1.4e(−4) 2.0e(−5) 5.6e(−4) 6.0e(−4) 2.0e(−5) 8.9e(−5) 9.2e(−5) 2.3e(−5) 2.2e(−5)

‖F (x(2))‖ 5.1e(−15) 3.4e(−34) 7.0e(−17) 1.1e(−16) 3.4e(−34) 2.8e(−29) 6.0e(−30) 1.1e(−33) 7.2e(−34)

‖F (x(3))‖ 1.5e(−61) 1.1e(−207) 1.5e(−69) 7.8e(−69) 1.1e(−207) 5.5e(−179) 1.2e(−182) 3.5e(−206) 2.4e(−207)

solutions of this problem is

α = (0.3822666 . . . , 0.6911725 . . . , 0.9234664 . . . , 1.076325 . . . , 1.143815 . . . , 1.118869 . . . )t.

Example 2 In this example, we consider one of the famous applied science problem which is
known as Hammerstein integral equation (see [20, pp. 19-20] to check the effectiveness and
applicability of our proposed methods as compared to the other existing methods, is given as
follows:

x(s) = 1 + 1
5

∫ 1

0
F (s, t)x(t)3dt

where x ∈ C[0, 1]; s, t ∈ [0, 1] and the kernel F is

F (s, t) =
{

(1− s)t, t ≤ s,

s(1− t), s ≤ t.

To transform the above equation into a finite-dimensional problem by using Gauss Legen-
dre quadrature formula given as

∫ 1
0 f(t)dt ' ∑8

j=1 wjf(tj), where the abscissas tj and the
weights wj are determined for t = 8 by Gauss Legendre quadrature formula. Denoting the
approximations of x(ti) by xi(i = 1, 2, ..., 8), one gets the system of nonlinear equations
5xi − 5−∑8

j=1 aijx
3
j = 0, where i = 1, 2, ..., 8

aij =
{
wjtj(1− ti), j ≤ i,

wjti(1− tj), i < j.

Where the abscissas tj and the weights wj are known and given in following table for t = 8.
The convergence of the methods towards the root

X = (1.00209 . . . , 1.00990 . . . , 1.01972 . . . , 1.02643 . . . , 1.02643 . . . , 1.01972 . . . , 1.00990 . . . , 1.00209 . . . )t,



Table 6: (Abscissas and weights of Gauss Legendre quadrature formula for t = 8 )

j tj wj

1 0.01985507175123188415821957... 0.05061426814518812957626567...
2 0.10166676129318663020422303... 0.11119051722668723527217800...
3 0.23723379504183550709113047... 0.15685332293894364366898110...
4 0.40828267875217509753026193... 0.18134189168918099148257522...
5 0.59171732124782490246973807... 0.18134189168918099148257522...
6 0.76276620495816449290886952... 0.15685332293894364366898110...
7 0.89833323870681336979577696... 0.11119051722668723527217800...
8 0.98014492824876811584178043... 0.05061426814518812957626567...

Table 7: (Comparison of ‖x(n+1) − x(n)‖ among listed methods in the Hammerstein integral equation )

‖x(n+1) − x(n)‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

\ρ

‖x(2) − x(1)‖ 1.2e(−4) 5.7e(−6) 5.7e(−6) 5.7e(−6) 5.7e(−6) 5.7e(−6) 5.7e(−6) 5.7e(−6) 5.7e(−6)

‖x(3) − x(2)‖ 4.3e(−20) 6.5e(−38) 6.5e(−38) 8.7e(−38) 6.5e(−38) 1.7e(−37) 1..7e(−37) 7.8e(−38) 7.8e(−38)

‖x(4) − x(3)‖ 8.1e(−82)1.6e(−229)1.6e(−229)1.2e(−228)1.6e(−229)1.4e(−226)1.4e(−226)5.5e(−229)5.5e(−229)

ρ 3.9983 5.9987 5.9987 5.9987 5.9987 5.9989 5.9989 6.0067 5.9989

Table 8: (Comparison of residual error ‖F (x(n))‖ among listed methods in the Hammerstein integral
equation )

‖F (x(n))‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

‖F (x(1))‖ 5.4e(−4) 2.7e(−5) 2.7e(−5) 2.7e(−6) 2.7e(−5) 2.7e(−5) 2.7e(−5) 2.7e(−5) 2.7e(−5)

‖F (x(2))‖ 2.0e(−19) 3.1e(−37) 3.1e(−37) 4.1e(−37) 3.1e(−37) 8.0e(−37) 8.1e(−37) 3.6e(−37) 3.6e(−37)

‖F (x(3))‖ 3.8e(−81)7.6e(−229)7.6e(−229)5.7e(−228)7.6e(−229)6.5e(−226)6.5e(−226)2.6e(−228)2.6e(−228)

is tested in the following Tables 4 and 5 on the basis of the initial guess
(
−1

2 , −
1
2 , −

1
2 , −

1
2

)
.

Example 3 Let us consider the following nonlinear system of nonlinear equation [10]

fi(x) = xi − cos
2xi −

4∑
j=1

xj

 , (33)

where i = 1, 2, 3, 4. We choose the initial guess x(0) = (1, 1, 1, 1)t for this problem for obtain-
ing the required solution α = (0.5149333 . . . , 0.5149333 . . . , 0.5149333 . . . , 0.5149333 . . . )t.

Concluding remarks

The main beauty of the proposed family of iterative methods for the system of nonlinear equa-
tions is that we have to calculate only one inverse of the Jacobian matrix (i.e. F ′(x(n))) in the



Table 9: (Comparison of ‖x(n+1) − x(n)‖ among listed methods in example (3) )

‖x(n+1) − x(n)‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

\ρ

‖x(2) − x(1)‖ 3.7e(−3) 3.6e(−4) 3.5e(−4) 3.5e(−4) 3.6e(−4) 3.9e(−4) 3.9e(−4) 3.6e(−4) 3.6e(−4)

‖x(3) − x(2)‖ 4.6e(−12) 9.3e(−24) 8.3e(−24) 1.4e(−23) 9.3e(−24) 5.5e(−23) 5.6e(−23) 1.2e(−23) 1.2e(−23)

‖x(4) − x(3)‖ 1.2e(−47)2.8e(−141)1.6e(−141)5.4e(−140)2.8e(−141)4.9e(−136)4.9e(−136)2.0e(−140)1.4e(−140)

ρ 4.0004 6.0000 5.9987 6.0000 6.0000 6.0000 6.0000 6.0000 5.9989

Table 10: (Comparison of residual error ‖F (x(n))‖ among listed methods in example (3) )

‖F (x(n))‖ JM RWB GM1 GM2 CM SA P̂M1 P̂M2 P̂M3

‖F (x(1))‖ 1.0e(−2) 9.7e(−4) 9.4e(−4) 9.6e(−4) 9.7e(−4) 1.0e(−3) 1.1e(−3) 9.8e(−4) 9.8e(−4)

‖F (x(2))‖ 1.3e(−11) 2.5e(−23) 2.3e(−23) 3.8e(−23) 2.5e(−23) 1.5e(−22) 1.5e(−22) 3.4e(−24) 3.2e(−23)

‖F (x(3))‖ 3.2e(−47)7.7e(−141)4.2e(−141)1.5e(−139)7.7e(−141)1.3e(−135)1.3e(−135)5.3e(−140)3.9e(−140)

case of nonlinear system which reduce the computational cost. The convergence properties are
fully investigated along with two main theorems describing their order of convergence. We also
tested the order of convergence of our proposed families on a concrete variety of numerical ex-
periments and it is found that the order of convergence of the proposed family is well deduced
for scalar as well as system of nonlinear equations. Further, our proposed methods perform bet-
ter than the existing methods on the mentioned numerical examples even though if we choose
the same problems with same initial guesses.

Further, the computational accuracy of the iterative methods dependent on several factors like;
body structures of the iterative methods, initial guesses, test functions and the sought zeros. We
have shown in the numerical experiments that our proposed iterative methods perform better
than the existing ones of the same order. But, these results are not always expected because there
is no iterative methods till date which shows best accuracy for every test functions. Further, it
is also important to note that the behavior of iterative methods for convergence to the required
root is depend on asymptotic error constant cj , test function f(x) and the required root α.
References
[1] Abad, M.F., Cordero, A. and Torregrosa, J.R. (2014) A family of seventh-order schemes for solving

nonlinear systems. Bull. Math. Soc. Sci. Math. Roum. 57 (105)(2), 133–145.
[2] Artidiello, S., Cordero, A., Torregrosa, J.R. and Vassileva, M.P. (2015) Multidimensional general-

ization of iterative methods for solving nonlinear problems by means of weight-function procedure.
Appl. Math. Comput. 268, 1064–1071.

[3] Awawdeh, F. (2010) On new iterative method for solving systems of nonlinear equations. Numer.
Algor. 54, 395–409.

[4] Burden, R.L. and Faires, J.D. (2001) Numerical Analysis. PWS Publishing Company, Boston.
[5] Cordero, A., Hueso, J.L. and E. Martı́nez, Torregrosa, J.R. (2010) A modified NewtonJarratt’s

composition. Numer. Algor. 55, 87–99.
[6] Cordero, A., Maimó, J.G., Torregrosa, J.R. and Vassileva, M.P. (2014) Solving nonlinear problems

by Ostrowski-Chun type parametric families. J. Math. Chem. 52, 430–449.
[7] Geum, Y.H., Kim, Y.I. and Neta, B. (2015) On developing a higher-order family of double-Newton



methods with a bivariate weighting function. Appl. Math. Comput. 254, 277–290.
[8] Grau, M. and Dı́az-Barrero, J.L. (2006) An improvement to Ostrowski root-finding method. Appl.

Math. Comput. 173, 450–456.
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