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Abstract

In this work, effect of using an adaptive central-upwind (ACU) interpolation on weighted
compact non-linear scheme (WCNS) is investigated. Based on the smoothness of solution,
this type of interpolation adapts between central and upwind stencils by a weighting relation
and combination of smoothness indicators of the optimal high-order stencil and its sub-
stencils. The coefficients of sixth to tenth order ACU-WCNS are calculated. To evaluate basic
numerical characteristics of this new schemes truncation error analysis and wavenumber
analysis is performed and bg applying ACU-WCNS on several benchmark problems, its
shock-capturing abilities, its behavior in presence of severe discontinuity and its numerical
resolution in shock-entropy interaction are investigated.

Keywords: High-order numerical method; Weighted compact nonlinear scheme; Shock-
capturing; Compressible flow.

Introduction

Over past three decades there were many efforts for development of high-order numerical
methods that simultaneously have the capability to capture flow discontinuity and resolve
small-scale features of flow. Weighted Essentially Non-oscillatory (WENO) [1] scheme and
Weighted Compact Nonlinear Scheme (WCNS) [2] scheme are two families of such
numerical methods.

The WENO scheme is based on Essentially Non-oscillatory (ENO? scheme [3]I, but instead of
using only one of sub-stencils, it uses a weighted combination of all sub-stencils. This scheme
was developed in finite volume framework bﬁ/ Liu et al. [4&. Jiang and Shu [1] extended the
WENO scheme to finite difference framework and proposed a new formulation for nonlinear
weights to increase order of accuracy and later Balsara and Shu [5] and Gerolymos et al. [6]
studied the high order behavior of the WENO scheme.

Despite having high order of accuracy and good shock capturing capabilities, the WENO
scheme also has some shortcomings. One of the problems with the original WENO scheme of
Jiang and Shu [1] is loss of accuracy near critical points. Analysis of Henrick et al. [7] showed
this loss of accuracy is because of nonlinear weights and they purposed a mapping method for
computation of nonlinear weights to prevent loss of accuracy. Borges et al. [8] also purposed
a new method for computation of nonlinear weights of fifth order WENO to avoid loss of
accuracy and later expanded it for higher order of accuracy [9], their method has lower
computational cost in comparison to Henrick et al. [7] mapping method.

There are several ways to reduce numerical dissipation of the WENO scheme. One them is
hybrid methods which only use the WENO scheme in vicinity of discontinuities and use
another scheme with lower or no numerical dissipation in smooth regions [10]-[12]. Another
way is to optimize dissipation and dispersion error [13]-[15], this usually achieved by finding
optimal coefficients or linear weights by minimizing integral error following optimizing
procedures of Tam and Webb [16] and Zhuang and Chen [17]. A more recent way for
reduction of numerical dissipation of the WENO scheme is adaptive central-upwind WENO
(ACU-WENO) scheme [18]-[20]. Based on smoothness of solution, this new family of
WENO scheme can adapt between central and upwind stencils and achieves higher order of



accuracy, numerical resolution and lower dissipation by using a central stencil in smooth
regions of solution.

The WCNS was originally developed by Deng and Zhang [21] and later extended to higher
order of accuracy by Nonomura et al. [22] and Zhang et al. [23]. This scheme Is a
combination of compact scheme [24] and WENO interpolation [25]. This scheme includes a
node-to-midpoint weighted interpolation and a midpoint-to-node differencing and has three
advantages over finite difference WENO scheme [265):

1- Slightly higher numerical resolution;

2- Compatibility with different flux treatments;

3- Better performance on general curvilinear grids [27].
Nonomura and Fujii [28] studied effects of different types of midpoint-to-node differencing
methods on WCNS and they showed it does not significantly change numerical resolution and
shock capturing capabilities of WCNS. Nonomura and Fujil [26] proposed a new formulation
for midpoint-to-node differencing, which significantly increases robustness of WNCS.
Recently Sumi and Kurotaki [29] used a sixth order adaptive central-upwind interpolation
with robust formulation of a tridiagonal midpoint-to-node differencing to improve numerical
resolution and robustness of original WCNS LZlJ Some studies [22][30]-[32] showed
increasing the order of accuracy of numerical method, will increase computational efficiency.
T_herr]efore in this paper we intend to study ACU-WCNS with order of accuracy higher than
sixth.,

Construction of the Numerical Scheme
For numerical solution of a conservation law as
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where t is time, x is a spatial dimension, u is function of x and t and f is flux function,
Eq. (1) can be written in a semidiscretized form as

ou ,

where f' is an approximation of spatial derivative of f on grid point x.. Following Lele
[24], for computation of f." in Eq. (2) we can use a linear formulation as
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where M and N are positive integers. We can derive the coefficients a; and b by matching

the Taylor series coefficients [24]. The robust formulation of Nonomura and Fujii [26], which
uses a midpoint-and-node-to-node differencing, can be written in a general form as
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Following Nonomura and Fujii [28] we only use explicit form of Eq. (3) and Eq. (4) (i.e.
a; =0). For explicit form of these equations, the coefficients are listed in [28] and we list

them again in Table 1 and Table 2, respectively for Eq. (3) and Eq. (4).




Table 1. Coefficients for Eq. (3) [28]

Coefficients b, b, b, b, b,
- 9 1
Fourth-order explicit = —— 0 0 0
8 24
Sixth-order explicit ~ _S 3 0 0
64 384 640
Eighth-order explicit 1225 _ 245 49 _S
1024 3072 5120 7168
. 19845 735 567 405 35
Tenth-order explicit — — — -
16384 8192 40960 229376 294912
Table 2. Coefficients for Eq. (4) [28]
Coefficients C, c, C, C, Cs
. 4 1
Fourth-order explicit 3 5 0 0 0
Sixth-order explicit 3 _3 3 0 0
2 10 30
Eighth-order explicit 8 2 8 _ 1
5 5 105 140
Tenth-order explicit > 10 2 2 L
3 21 42 252 630

To interpolate midpoint values from node values (to save space we only write formulation for
left-biased interpolation, which is shown by superscript L and the right-biased interpolation
could be derived by mirroring the left-biased interpolation around x , ), in a stencil
i+=
2

S = (x X,.r1) With (2r —1) points and r substencils as S = (X ;.- X ), W
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can use a linear formulation as

fi_ = Z dk fi+k’ (5)
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where d, is constant coefficient. If we consider rsubstencils as S| (Xisirsareo Xipy ) 1N

s \we can use a linear formulation as
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where d, is linear weight and fr , 1s the interpolated value for each substencil. We can
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where a,, is constant coefficient. The linear relation in Eq. (6) cannot capture discontinuities

accurately. To solve this problem we can combine the substencil values of Eq. (7) by a
nonlinear formulation as

fr=>awf" (8)
i+% kZ:(; k k,i+%
where «, is nonlinear weight and is given by
7
a)k = r-1 . 1 (9)

of =% k=0,..,r-1 (10)

where & is small positive value to avoid division by zero, p is a positive integer and IS; is
smoothness indicator and is given by

IS! = ZI sz"l[a fa:(x)j dx. (11)
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Hu et al. [19] proposed an alternative procedure for the WENO scheme which smoothly
adapts between central and upwind stencils. According to this concept, to interpolate midpoint
values from node values, instead of using biased stencil S® Y we use a central stencil
s =(x, X, ) with (2r) points and r+1 substencils. To include the new substencil,

i=r+17°"" Dir

we should rewrite Eq. (5) to Eq. (8) as

i (12)

fL=ydf (13)
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the nonlinear weight is given by
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where C is a constant and CL 1. z,, is a new reference smoothness indicator. To avoid

oscillations near discontinuities, instead of using IS’ in Eq. (16), we use IS,, which is
smoothness indicator of the complete stencil. To increase numerical resolution Hu and Adams
[20] proposed a new formulation for computation of «;
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where C, is a constant and C, [} C. y =~ and IS, is an average of smoothness indicator
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of different substencils and there is a relation between z,,, IS,, and IS, as
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Some values and formulas for d,, fk’_ . IS¢, 1S, and IS, are given in appendix A.
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Truncation Error Analysis

Following Hu et al. [19], in this we perform a truncation error to find sufficient condition for
ACU-WCNS to achieve the designed order of accuracy. We can write below relations

between f | and interpolated values f , from Eq. (13) and fk’_ , from Eq. (7)

i+§ +2 +2
f, =f, +0(AX"), (19)
|+E H—E
£ =f  + AAX +O(AX™), (20)
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We can rewrite Eq. (14) as
fo=>dif"  +> (e —df)f" (21)
i+ k=0 k,|+E k=0 K,i+=

Using the first linear term on the right-hand-side of Eq. (21) in Eq. (3) or Eqg. (4) leads to
derivative of O(Ax*"). Therefore the sufficient condition for Eq. (3) or Eq. (4) to be of

O(AX®") is that the term on the right-hand-side of Eq. (21) is at leastO(Ax*"*"). Using Eq. (20)
we can expand this term as

r r r

> (of ;) fr =t (e —df )+ AACY (@ —df )+ O )Y (@ —df). (22)
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The first term on the right-hand-side of Eq. (22) is zero because of normalization of the
weights, therefore the sufficient condition for having a O(Ax*") derivative is

o —d =0(AX™). (23)

Numerical Examples

In this section, we provide some numerical examples to show shock-capturing capabilities and
numerical resolution of the proposed ACU-WCNS scheme. These problems are described by
compressible Euler equations

P pu
9 pu +i pu’+p |=0, (24)
ot OX
E (E+p)u
where p is density, p is pressure, u is x component of velocity vector, E is total energy
and related to pressure as ezil+%pu2 and y =14 is the ratio of specific heats. To
}/_
reduce numerical oscillations we use local characteristic decomposition by Roe averaged
variables and we use the Lax-Friedrichs method for flux vector splitting. For time integration
we use a third order TVD Runge-Kutta method [33]. We used Eq. (4) for midpoint-and-node-

to-node differencing and Eq. (17) for calculation of «, , C, =1000 and q=2(r -1).

In a series of benchmark problems, results of ACU-WCNS with six, eight and ten point
stencils are compared with ninth order WENO-Z [9]. The first problem is Sod shock tube [34]
and initial condition is defined as

(1,0,2) if 0<x<0.5,
(pu,p)= :
(0.125,0,0.1) if 05<x<1.
The second problem is Lax shock tube [35] and initial condition is
(o0, p)= (0.445,0.698,0.3528)  if 0<x<0.5,
#5P)=1(05,0,0571) if 05<x<l.
The third problem is 123 shock tube [36] with initial condition as
(L-2,04) if 0<x<05
(pu,p)= :
(1,2,0.4) if 05<x<1.

We choose the fourth problem from Nonomura and Fujii [26]. This shock tube has a very
high pressure ratio and includes a severe shock. Initial condition is

(1,0,10000) if 0<x<0.5,
(p.u,p)= .
(0.125,0,0.1) if 05<x<1.

The fifth problem is from Toro [37] and this problem also includes a severe shock. Initial
condition is

(o, p) = (1,-19.59745,1000) if 0<x<0.5,
ptR)= (1,-19.59745,0.01) if 05<x<1.
The last problem is the Shu-Osher problem [38] and initial condition is



( U )_ (3.857,2.629,10.333) if O<x<l]
PEPI= (1r02sin(Gx),01)  if 1<x<1o0.

Fig. (1) and Fig. (2) respectively show density distribution for the Sod and the Lax problems.
All ACU-WCNS show good capturing abilities and there are no visible numerical
oscillations. It should be noted some adaptive central-upwind [18] or optimized [15] WENO
schemes have numerical oscillations in these problem and therefore we could conclude Hu et
al [19] adaption mechanism also works well in ACU-WCNS.
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Figure 1. Density distribution for the Sod problem with 100 grid points at t=0.25 s
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Figure 2. Density distribution for the Lax problem with 100 grid points at t=0.1 s

The third to fifth problems are cases with severe conditions and
density distribution. The 123 problem contains a near-vacuum

Fig. (3) to Fig. (5) show their
condition and is suitable for

assessment of numerical methods in low pressure and density situations. All ACU-WCNS
show good results for this problem. The fourth and fifth problems contain strong shocks. All

methods show good results except ACU-WCNS with ten points
Is not as robust as other methods.

stencil, therefore this method
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Figure 3. Density distribution for the 123 problem with 100 grid points at t=0.1s
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Figure 4. Density distribution for the forth problem with 100 grid points at t=0.0035 s
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Figure 5. Density distribution for the fifth problem with 100 grid points at t=0.012 s

Fig. (6) shows the density distribution for the Shu-Osher problem. This problem includes an
interaction between an entropy wave and a shock wave and resolution of density oscillations
after the shock is a good criteria for investigate the resolution of a numerical method. The
reference solution this problem is calculated by a fifth order WENO-JS [1] scheme. All ACU-
WCNS show good numerical resolution and their resolution is superior to that of ninth order
WENO-Z.



45
4 }
35
3F
e |
=25F
B Reference Solution
2k WENO-Z-9th
- = ACU-WCNS-6p
15E a ACU-WENO-8p :
I o ACU-WCNS-10p ’
1F
05
: Il Il I | | | I Il Il Il | | | I | | | I Il Il

Figure 6. Density distribution for the Shu-Osher problem with 200 grid points t=1.8 s

Conclusions

In this paper we developed an adaptive interpolation procedure for WCNS scheme which
adapts between upwind and central stencil based on smoothness of solution. The shock-
capturing capabilities of the new scheme and its robustness was tested by solving several
benchmark problems. The results of benchmark problems shows the new scheme has good
shock capturing capabilities and high numerical resolution.

Appendix A

To avoid exceeding the limit for number of pages in a paper, we omitted the values and
formulas for d, , fkr_ . 1S, 1S, and IS, are given for r =3 and r =4 and only give these
,|+§

ave

values and formulas for r =5.
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