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Abstract 
In this work, effect of using an adaptive central-upwind (ACU) interpolation on weighted 
compact non-linear scheme (WCNS) is investigated. Based on the smoothness of solution, 
this type of interpolation adapts between central and upwind stencils by a weighting relation 
and combination of smoothness indicators of the optimal high-order stencil and its sub-
stencils. The coefficients of sixth to tenth order ACU-WCNS are calculated. To evaluate basic 
numerical characteristics of this new schemes truncation error analysis and wavenumber 
analysis is performed and by applying ACU-WCNS on several benchmark problems, its 
shock-capturing abilities, its behavior in presence of severe discontinuity and its numerical 
resolution in shock-entropy interaction are investigated. 
Keywords: High-order numerical method; Weighted compact nonlinear scheme; Shock-
capturing; Compressible flow. 

Introduction 
Over past three decades there were many efforts for development of high-order numerical 
methods that simultaneously have the capability to capture flow discontinuity and resolve 
small-scale features of flow. Weighted Essentially Non-oscillatory (WENO) [1] scheme and 
Weighted Compact Nonlinear Scheme (WCNS) [2] scheme are two families of such 
numerical methods. 
 
The WENO scheme is based on Essentially Non-oscillatory (ENO) scheme [3], but instead of 
using only one of sub-stencils, it uses a weighted combination of all sub-stencils. This scheme 
was developed in finite volume framework by Liu et al. [4]. Jiang and Shu [1] extended the 
WENO scheme to finite difference framework and proposed a new formulation for nonlinear 
weights to increase order of accuracy and later Balsara and Shu [5] and Gerolymos et al. [6] 
studied the high order behavior of the WENO scheme. 
 
Despite having high order of accuracy and good shock capturing capabilities, the WENO 
scheme also has some shortcomings. One of the problems with the original WENO scheme of 
Jiang and Shu [1] is loss of accuracy near critical points. Analysis of Henrick et al. [7] showed 
this loss of accuracy is because of nonlinear weights and they purposed a mapping method for 
computation of nonlinear weights to prevent loss of accuracy. Borges et al. [8] also purposed 
a new method for computation of nonlinear weights of fifth order WENO to avoid loss of 
accuracy and later expanded it for higher order of accuracy [9], their method has lower 
computational cost in comparison to Henrick et al. [7] mapping method. 
 
There are several ways to reduce numerical dissipation of the WENO scheme. One them is 
hybrid methods which only use the WENO scheme in vicinity of discontinuities and use 
another scheme with lower or no numerical dissipation in smooth regions [10]-[12]. Another 
way is to optimize dissipation and dispersion error [13]-[15], this usually achieved by finding 
optimal coefficients or linear weights by minimizing integral error following optimizing 
procedures of Tam and Webb [16] and Zhuang and Chen [17]. A more recent way for 
reduction of numerical dissipation of the WENO scheme is adaptive central-upwind WENO 
(ACU-WENO) scheme [18]-[20]. Based on smoothness of solution, this new family of 
WENO scheme can adapt between central and upwind stencils and achieves higher order of 



accuracy, numerical resolution and lower dissipation by using a central stencil in smooth 
regions of solution. 
 
The WCNS was originally developed by Deng and Zhang [21] and later extended to higher 
order of accuracy by Nonomura et al. [22] and Zhang et al. [23]. This scheme is a 
combination of compact scheme [24] and WENO interpolation [25]. This scheme includes a 
node-to-midpoint weighted interpolation and a midpoint-to-node differencing and has three 
advantages over finite difference WENO scheme [26]: 

1- Slightly higher numerical resolution; 
2- Compatibility with different flux treatments; 
3- Better performance on general curvilinear grids [27]. 

Nonomura and Fujii [28] studied effects of different types of midpoint-to-node differencing 
methods on WCNS and they showed it does not significantly change numerical resolution and 
shock capturing capabilities of WCNS. Nonomura and Fujii [26] proposed a new formulation 
for midpoint-to-node differencing, which significantly increases robustness of WNCS. 
Recently Sumi and Kurotaki [29] used a sixth order adaptive central-upwind interpolation 
with robust formulation of a tridiagonal midpoint-to-node differencing to improve numerical 
resolution and robustness of original WCNS [21]. Some studies [22][30]-[32] showed 
increasing the order of accuracy of numerical method, will increase computational efficiency. 
Therefore in this paper we intend to study ACU-WCNS with order of accuracy higher than 
sixth.  
 

Construction of the Numerical Scheme 

For numerical solution of a conservation law as 

    ( ) 0,u f u
t x

∂ ∂
+ =

∂ ∂
     (1) 

where t  is time, x  is a spatial dimension, u  is function of x  and t  and f  is flux function, 
Eq. (1) can be written in a semidiscretized form as 
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where if ′  is an approximation of spatial derivative of f  on grid point ix . Following Lele 
[24], for computation of if ′  in Eq. (2) we can use a linear formulation as 
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where M  and N  are positive integers. We can derive the coefficients ja  and lb  by matching 
the Taylor series coefficients [24]. The robust formulation of Nonomura and Fujii [26], which 
uses a midpoint-and-node-to-node differencing, can be written in a general form as 
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Following Nonomura and Fujii [28] we only use explicit form of Eq. (3) and Eq. (4) (i.e. 
0ja = ). For explicit form of these equations, the coefficients are listed in [28] and we list 

them again in Table 1 and Table 2, respectively for Eq. (3) and Eq. (4). 

 



Table 1. Coefficients for Eq. (3) [28] 

  Coefficients                           1b                 2b                 3b                 4b                 5b  
 

  Fourth-order explicit             9
8

                1
24

−             0                 0                   0                 

  Sixth-order explicit               75
64

              25
384

−           3
640

            0                   0  

  Eighth-order explicit             1225
1024

          245
3072

−         49
5120

          5
7168

−           0  

  Tenth-order explicit               19845
16384

        735
8192

−        567
40960

         405
229376

−     35
294912

  

     
 

Table 2. Coefficients for Eq. (4) [28] 

  Coefficients                           1c                 2c                 3c                 4c                 5c  
 

  Fourth-order explicit             4
3

                1
6

−             0                 0                   0                 

  Sixth-order explicit               3
2

                 3
10

−           1
30

             0                   0  

  Eighth-order explicit             8
5

                 2
5

−            8
105

            1
140

−            0  

  Tenth-order explicit               5
3

                 10
21

−          2
42

             5
252

−           1
630

 

 
 
To interpolate midpoint values from node values (to save space we only write formulation for 
left-biased interpolation, which is shown by superscript L and the right-biased interpolation 
could be derived by mirroring the left-biased interpolation around 1

2
i

x
+

), in a stencil 
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i r i rS x x−
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can use a linear formulation as 
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where kd  is constant coefficient. If we consider r substencils as ( ) ( )2 1
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r
k i k r i kS x x−

+ − + +=  in 
( )2 1rS − , we can use a linear formulation as 
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where r
kd  is linear weight and 1,

2

ˆ r

k i
f

+
 is the interpolated value for each substencil. We can 

write 1,
2

ˆ r
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f

+
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where ,
r
k la  is constant coefficient. The linear relation in Eq. (6) cannot capture discontinuities 

accurately. To solve this problem we can combine the substencil values of Eq. (7) by a 
nonlinear formulation as 
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where r
kω  is nonlinear weight and is given by 
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where ε  is small positive value to avoid division by zero, p  is a positive integer and r
kIS  is 

smoothness indicator and is given by 
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Hu et al. [19] proposed an alternative procedure for the WENO scheme which smoothly 
adapts between central and upwind stencils. According to this concept, to interpolate midpoint 
values from node values, instead of using biased stencil ( )2 1rS − , we use a central stencil 

( ) ( )2
1,...,

r
i r i rS x x− + +=  with ( )2r  points and 1r +  substencils. To include the new substencil, 

we should rewrite Eq. (5) to Eq. (8) as 
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the nonlinear weight is given by 
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where C  is a constant and 1C � . 2rτ  is a new reference smoothness indicator. To avoid 
oscillations near discontinuities, instead of using r

rIS  in Eq. (16), we use 2rIS  which is 
smoothness indicator of the complete stencil. To increase numerical resolution Hu and Adams 
[20] proposed a new formulation for computation of r

kα  
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where qC  is a constant and qC C� . 1χ
ε

=  and r
aveIS  is an average of smoothness indicator 

of different substencils and there is a relation between 2rτ , 2rIS  and r
aveIS  as 

    2 2 .r
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Some values and formulas for r
kd , 1,

2

ˆ r

k i
f

+
, r

kIS , 2rIS  and r
aveIS  are given in appendix A. 

 

Truncation Error Analysis 

Following Hu et al. [19], in this we perform a truncation error to find sufficient condition for 
ACU-WCNS to achieve the designed order of accuracy. We can write below relations 
between 1

2
i

f
+

 and interpolated values 1
2

ˆ
i

f
+

 from Eq. (13) and 1,
2

ˆ r

k i
f

+
 from Eq. (7) 
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We can rewrite Eq. (14) as 
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Using the first linear term on the right-hand-side of Eq. (21) in Eq. (3) or Eq. (4) leads to 
derivative of 2( )rO x∆ . Therefore the sufficient condition for Eq. (3) or Eq. (4) to be of 

2( )rO x∆  is that the term on the right-hand-side of Eq. (21) is at least 2 1( )rO x +∆ . Using Eq. (20) 
we can expand this term as 
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The first term on the right-hand-side of Eq. (22) is zero because of normalization of the 
weights, therefore the sufficient condition for having a 2( )rO x∆  derivative is 

    1( ).r r r
k kd O xω +− = ∆      (23) 

Numerical Examples 

In this section, we provide some numerical examples to show shock-capturing capabilities and 
numerical resolution of the proposed ACU-WCNS scheme. These problems are described by 
compressible Euler equations 
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where ρ  is density, p  is pressure, u  is x  component of velocity vector, E  is total energy 

and related to pressure as 21
1 2

pe uρ
γ

= +
−

 and 1.4γ =  is the ratio of specific heats. To 

reduce numerical oscillations we use local characteristic decomposition by Roe averaged 
variables and we use the Lax-Friedrichs method for flux vector splitting. For time integration 
we use a third order TVD Runge-Kutta method [33]. We used Eq. (4) for midpoint-and-node-
to-node differencing and Eq. (17) for calculation of r

kα , 1000qC =  and 2( 1)q r= − . 
 
In a series of benchmark problems, results of ACU-WCNS with six, eight and ten point 
stencils are compared with ninth order WENO-Z [9]. The first problem is Sod shock tube [34] 
and initial condition is defined as 

    ( ) ( )
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, ,
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The second problem is Lax shock tube [35] and initial condition is 

    ( ) ( )
( )
0.445,0.698,0.3528 0 0.5,

, ,
0.5,0,0.571 0.5 1.

if x
u p

if x
ρ

< <=  < <
 

The third problem is 123 shock tube [36] with initial condition as 
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We choose the fourth problem from Nonomura and Fujii [26]. This shock tube has a very 
high pressure ratio and includes a severe shock. Initial condition is 
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The fifth problem is from Toro [37] and this problem also includes a severe shock. Initial 
condition is 

    ( ) ( )
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The last problem is the Shu-Osher problem [38] and initial condition is 
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Fig. (1) and Fig. (2) respectively show density distribution for the Sod and the Lax problems. 
All ACU-WCNS show good capturing abilities and there are no visible numerical 
oscillations. It should be noted some adaptive central-upwind [18] or optimized [15] WENO 
schemes have numerical oscillations in these problem and therefore we could conclude Hu et 
al [19] adaption mechanism also works well in ACU-WCNS.  
 

 
Figure 1.  Density distribution for the Sod problem with 100 grid points at t=0.25 s 

  



 
Figure 2.  Density distribution for the Lax problem with 100 grid points at t=0.1 s 

 
The third to fifth problems are cases with severe conditions and Fig. (3) to Fig. (5) show their 
density distribution. The 123 problem contains a near-vacuum condition and is suitable for 
assessment of numerical methods in low pressure and density situations. All ACU-WCNS 
show good results for this problem. The fourth and fifth problems contain strong shocks. All 
methods show good results except ACU-WCNS with ten points stencil, therefore this method 
is not as robust as other methods. 



 
Figure 3.  Density distribution for the 123 problem with 100 grid points at t=0.1 s 

S 



 
Figure 4.  Density distribution for the forth problem with 100 grid points at t=0.0035 s 

 
S 



 
Figure 5.  Density distribution for the fifth problem with 100 grid points at t=0.012 s 

 
Fig. (6) shows the density distribution for the Shu-Osher problem. This problem includes an 
interaction between an entropy wave and a shock wave and resolution of density oscillations 
after the shock is a good criteria for investigate the resolution of a numerical method. The 
reference solution this problem is calculated by a fifth order WENO-JS [1] scheme. All ACU-
WCNS show good numerical resolution and their resolution is superior to that of ninth order 
WENO-Z. 
 



 
Figure 6.  Density distribution for the Shu-Osher problem with 200 grid points t=1.8 s 

Conclusions 
In this paper we developed an adaptive interpolation procedure for WCNS scheme which 
adapts between upwind and central stencil based on smoothness of solution. The shock-
capturing capabilities of the new scheme and its robustness was tested by solving several 
benchmark problems. The results of benchmark problems shows the new scheme has good 
shock capturing capabilities and high numerical resolution.  
 

Appendix A 

To avoid exceeding the limit for number of pages in a paper, we omitted the values and 
formulas for r
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+
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aveIS  are given for 3r =  and 4r =  and only give these 

values and formulas for 5r = . 
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