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Abstract

In this paper, transient dynamic analysis of micro-cracks of arbitrary shape in two-dimensional,
linear piezoelectric fiber reinforced composite materials is presented. Interface cracks between
fiber and matrix as well as cracks inside the matrix and fibers are analyzed. A symmetric
Galerkin time-domain boundary element method in conjunction with a multi-domain technique
is developed for this purpose. The time discretization is performed by a collocation method and
time-domain fundamental solutions for piezoelectric materials are applied. An explicit time-
stepping scheme is obtained to compute the discrete boundary data including the generalized
crack-opening-displacements (CODs). Iterative solution algorithms are implemented to treat
the non-linear semi-permeable electrical crack-face boundary conditions and for a crack-face
contact analysis at time-steps when a physically unacceptable crack-face intersection occurs.
Numerical examples are presented to reveal the effects of the micro-cracks, the material com-
binations and the dynamic loading on the intensity factors and the scattered wave fields.

Keywords: piezoelectric fiber composites, interface cracks, impact loading, complex intensity
factors, time-domain BEM.
Introduction

Piezoelectric materials are widely applied in smart structures like transducers, actuators and
sensors by utilizing the property of converting electrical energy into mechanical energy and
vice versa. In recent years piezoelectric fiber reinforced materials have received increasing
attention. A special class of such composites combines piezoelectric ceramics or polymers
as active fibers with passive non-piezoelectric materials as matrix. Fiber reinforced materials
can be optimized to satisfy the high performance requirements by taking advantages of the
most beneficial properties of each constituent. Piezoelectric ceramics are very brittle with low
fracture toughness and micro as well as macro cracks may be induced during the manufacturing
and under the in-service condition. Beside cracks inside the homogeneous matrix and fibers,
interface cracks play an important role for the design and safety of real structures. Since the
electrical permittivity of the crack medium has a significant influence on the intensity factors the
crack-face boundary conditions have to be described properly. Although the analysis of cracks
in homogenous piezoelectric solids under static and dynamic loadings has been presented by
many authors the corresponding analysis of interface cracks in piezoelectric fiber reinforced
materials is rather limited due to the problem complexity. This paper presents such an analysis
by using a hypersingular symmetric Galerkin boundary element method (SGBEM) for crack
problems in two-dimensional (2D), fiber reinforced and linear piezoelectric solids.
Problem statement and numerical solution algorithm

We consider a piecewise homogeneous linear piezoelectric fiber-matrix structure with cracks of
arbitrary shape. In the absence of body forces, free electric charges and using quasi-electrostatic



assumption, the cracked solid satisfies the generalized constitutive equations

σiJ(x, t) = Cλ
iJKluK,l(x, t) (1)

and the generalized equations of motion

σiJ,i(x, t) = ρλδ∗JK üK(x, t), δ∗JK =
{
δjk, J = j; K = k,
0, otherwise, (2)

the initial conditions
uI(x, t = 0) = u̇I(x, t = 0) = 0, (3)

the boundary conditions
uI(x, t) = ūI(x, t), x ∈ Γu, (4)

tI(x, t) = t̄I(x, t), x ∈ Γt, (5)

and the continuity as well as the equilibrium conditions on the interface between the fiber and
the matrix except the crack-faces

uII(x, t) = uIII (x, t), x ∈ Γif , (6)

tII(x, t) = −tIII (x, t), x ∈ Γif , (7)

with the lower case letter subscripts j ∈ {1, 2} and the capital letter subscripts J ∈ {1, 2, 4},
respectively. The generalized displacements uI , the generalized tractions tI , the generalized
stresses σiJ and the generalized elasticity tensor Cλ

iJKl for a homogenous domain Ωλ (λ =
1, 2, ..., N) are defined by

uI =
{
ui, I = i (mechanical displacements)
ϕ, I = 4 (electrical potential) , (8)

σiJ =
{
σij, J = j (mechanical stresses)
Di, J = 4 (electrical displacements) , (9)

CiJKl =


cijkl, J = j; K = k (elasticity tensor)
elij, J = j; K = 4 (piezoelectric tensor)
eikl, J = 4; K = k (piezoelectric tensor)
−κil, J = K = 4 (electrical permittivity tensor)

, (10)

tI(x, t) = σjI(x, t)ej(x). (11)

In the Eqs. (1)-(11), ej , ui, σij , ϕ and Di are the outward unit normal vector, the mechanical
displacements, the stresses, the electrical potential and the electrical displacements. Further, ρ,
Cijkl, eijk and κij represent the mass density, the elasticity tensor, the piezoelectric tensor and
the dielectric permittivity tensor. Γt and Γu define the external boundaries where the tractions
tI and the displacements uI are prescribed, while Γif is the interface between the homogenous
domains Ωλ (λ = 1, 2, ..., N).

On the crack-faces three different electrical boundary conditions are considered. As an exten-
sion of the mostly applied traction-free crack-face boundary condition in linear elastic fracture
mechanics it has been suggested in [4] to consider the crack as impermeable for the electrical
field

D2(x ∈ Γc+ , t) = D2(x ∈ Γc− , t) = 0. (12)



Γc± denotes the upper and the lower crack-faces. Another in [5] introduced model treats the
crack as fully electrical permeable

D2(x ∈ Γc+ , t) = D2(x ∈ Γc− , t), ϕ(x ∈ Γc+ , t)− ϕ(x ∈ Γc− , t) = 0. (13)

This implies identical potentials on both crack-faces or in other words the crack exists only for
the mechanical and not for the electrical field. In both models, the limited dielectric properties
of the interior of the crack are not taken into account. Due to this fact a more realistic semi-
permeable crack-face boundary condition has been introduced as [2]

D2(x ∈ Γc+ , t) = D2(x ∈ Γc− , t) = −κc
ϕ(x ∈ Γc+ , t)− ϕ(x ∈ Γc− , t)
u2(x ∈ Γc+ , t)− u2(x ∈ Γc− , t) , (14)

where κc = κrκ0 is the product of the relative permittivity of the considered crack medium
κr and the permittivity of the vacuum κ0 = 8.854 · 10−12C/(V m). D2 and u2 are the normal
components of the electrical displacements and the mechanical displacements on the crack-
faces. This crack-face boundary condition has been further improved by including electrostatic
tractions [3], [1]. The generalized crack-opening-displacements (CODs) are defined by

∆uI(x, t) = uI(x ∈ Γc+ , t)− uI(x ∈ Γc− , t). (15)

Throughout the paper, a comma after a quantity represents spatial derivatives while a dot over
the quantity denotes time differentiation. Lower case Latin indices take the values 1 and 2 (elas-
tic), while capital Latin indices take the values 1, 2 (elastic) and 4 (electric). Unless otherwise
stated, the conventional summation rule over repeated indices is implied.
Time-domain boundary integral equations and fundamental solutions

A spatial Galerkin-method is implemented to solve the initial-boundary value problem with the
boundary element method. This demands that the time-domain boundary integral equations
(BIEs) are treated in a weighted residual sense. The generalized time-domain displacement and
traction BIEs can be written as [8]∫

Γ

ψ(x)uJ(x, t)dΓx =

∫
Γ

ψ(x)
∫
Γb

[
uGIJ(x, y, t) ∗ tI(y, t)− tGIJ(x, y, t) ∗ uI(y, t)

]
dΓydΓx

+
∫
Γ

ψ(x)
∫

Γc+

tGIJ(x, y, t) ∗∆uI(y, t)dΓydΓx, (16)

∫
Γ

ψ(x)tJ(x, t)dΓx =

∫
Γ

ψ(x)
∫
Γb

[
vGIJ(x, y, t) ∗ tI(y, t)− wGIJ(x, y, t) ∗ uI(y, t)

]
dΓydΓx

+
∫
Γ

ψ(x)
∫

Γc+

wGIJ(x, y, t) ∗∆uI(y, t)dΓydΓx, (17)



where ψ(x) is the weight or test function, Γb = Γu + Γt + Γif , an asterisk denotes the Riemann
convolution

g(x, t) ∗ h(x, t) =
t∫

0

g(x, t− τ)h(x, τ)dτ (18)

and the dynamic displacement, traction and higher-order traction fundamental solutions are
defined by

tGIJ(x, y, t) = CqIKreq(y)uGKJ,r(x, y, t), (19)

vGIJ(x, y, t) = −CpIKsep(x)uGKJ,s(x, y, t), (20)

wGIJ(x, y, t) = CpIKsep(x)CqJLreq(y)uGKL,sr(x, y, t). (21)

The fundamental solutions possess the following spatial symmetry properties

uGIJ(x, y, t) = uGJI(y, x, t), (22)

tGIJ(x, y, t) = −vGIJ(x, y, t) = vGJI(y, x, t), (23)

wGIJ(x, y, t) = wGJI(y, x, t). (24)

These symmetry properties (22)-(24) can be used to derive a spatial symmetric Galerkin-method.
This is achieved if the displacement Galerkin-BIEs (16) are applied on the external boundary
Γu where the generalized displacements are known and the interface Γif for the generalized
tractions, while the traction Galerkin-BIEs (17) are used on the external boundary Γt where the
generalized tractions are prescribed and the interface Γif for the generalized displacements.

The time-domain fundamental solutions for homogeneous linear piezoelectric solids [7] are
implemented in this work. They are expressed in the 2D case by a line integral over a unit circle
as

uGIJ(x, y, t) = H(t)
4π2

∫
|n|=1

3∑
m=1

Pm
IJ

ρcm

1
cmt+ n · (y− x)dn, (25)

where H(t), n, cm and Pm
IJ denote the Heaviside step function, the wave propagation vector,

the phase velocities of the elastic waves and the projector. By integration by parts and applying
the properties of the time convolution the time-domain generalized displacement fundamental
solutions can be divided into a singular static and a regular dynamic part as

uGIJ(x, y, t) ∗ f(t) = uSIJ(x, y)f(t) + uDIJ(x, y, t) ∗ ḟ(t). (26)

In the same way, the traction and the higher-order traction fundamental solutions can also be
divided into their singular static and regular dynamic parts [8].
Numerical solution algorithm

To solve the time-domain BIEs (16) and (17) a numerical solution procedure is presented in the
following. The Galerkin-method is used for the spatial discretization while a collocation method
is utilized for the temporal discretization [9]. The piezoelectric solid is divided into several sub-
domains with homogeneous material properties and to each sub-domain the time-domain BIEs
(16) and (17) are applied. For the spatial discretization, the crack-faces, the external bound-
ary of each homogeneous sub-domain and the interfaces of the cracked solid are discretized
by linear elements. Linear shape functions are also used for the temporal discretization in the
present analysis. At the crack-tips inside a homogeneous sub-domain, special crack-tip ele-
ments are applied to describe the local behaviour of the generalized CODs near the crack-tips



properly. This ensures an accurate and a direct calculation of the intensity factors from the nu-
merically computed CODs. On the other hand, the asymptotic crack-tip field in the case of an
interfacial crack between two dissimilar piezoelectric materials shows different oscillating and
non-oscillating singularities in the generalized stress field [6], which makes an implementation
of special crack-tip elements quite cumbersome. For this reason, only standard elements are
applied at the crack-tips for interface cracks. The strongly singular and hypersingular boundary
integrals can be computed analytically. By using linear temporal shape-functions, time integra-
tions can also be performed analytically. Only the line integrals over the unit circle arising in
the regular parts of the dynamic fundamental solutions have to be computed numerically by the
standard Gaussian quadrature.

After temporal and spatial discretizations and considering the initial conditions the following
systems of linear algebraic equations can be obtained for each sub-domain Ωζ (ζ = 1, 2, ..., N)

CζuKζ = US
ζ tKζ − TS

ζ uKζ + TS
ζ ∆uKζ

+
K∑
k=1

[
UD;K−k+1
ζ tkζ − TD;K−k+1

ζ ukζ + TD;K−k+1
ζ ∆ukζ

]
, (27)

DζtKζ = VS
ζ tKζ −WS

ζ uKζ + WS
ζ ∆uKζ

+
K∑
k=1

[
VD;K−k+1
ζ tkζ −WD;K−k+1

ζ ukζ + WD;K−k+1
ζ ∆ukζ

]
. (28)

By invoking the continuity conditions (6) and (7) on the interface Γif as well as (12), (13) or
(14) on the crack-faces Γc+ and Γc− and by considering the boundary conditions (4) and (5),
the following explicit time-stepping scheme can be obtained

xK = (Ξ1)−1

Υ1yK +
K−1∑
k=1

(
ΛK−k+1tk −ΘK−k+1uk

), (29)

where Ξ1 and Υ1 are the system matrices, yK is the vector of the prescribed boundary data while
xK represents the vector of the unknown boundary data, which can be computed time-step by
time-step.

The dynamic intensity factors for a crack-tip inside a homogeneous domain or on the interface
are defined in [6] and [8]. They are obtained directly from the numerically computed general-
ized CODs.
Numerical examples

In the following, numerical examples are presented and discussed. To measure the intensity of
the electrical loading the parameter

χ = e22

κ22

D0

σ0
(30)

is introduced, with σ0 and D0 being the mechanical and electrical loading amplitudes. For
convenience, the mode-I, the mode-II and the mode-IV dynamic intensity factors for crack-tips
inside a homogeneous sub-domain are normalized by

K∗I (t) = KI(t)
K0

, K∗II(t) = KII(t)
K0

, K∗IV (t) = e22

ε22

KIV (t)
K0

. (31)



In the same way, the real part K1 and the imaginary part K2 of the complex dynamic stress
intensity factor and the electrical displacement intensity factor K4 for interface cracks are nor-
malized by

K∗1(t) = K1(t)
K0

, K∗2(t) = K2(t)
K0

, K∗4(t) = eI22
εI22

K4(t)
K0

, (32)

with K0 = σ0
√
πa and a is the half length of an internal crack.

A fiber reinforced plate with a crack near the fiber

In the first example as shown in Fig. 1, we consider a fiber reinforced plate with a crack of
length 2a near the fiber. The geometry of the cracked plate is determined by h = 16.0mm,
w = 20.0mm, r = 5.0mm and a = r.

)(t

h
a2

w

r

ATip BTip

II

I

Figure 1: A fiber reinforced plate with a crack near the fiber

A tensile impact loading of the form σ(t) = σ0H(t) is applied on the upper boundary, where
H(t) denotes the Heaviside step function. The normal components of the mechanical displace-
ments are fixed on the left, right and lower boundary. As material for the matrix Epoxy is
chosen, which has the following material parameters

C11 = 8.0GPa, C12 = 4.4GPa, C22 = 8.0GPa, C66 = 1.8GPa,
κ11 = 0.0372C/(GVm), κ22 = 0.0372C/(GVm) (33)

and the mass density ρ = 1260kg/m3. For the fiber three different configurations are investi-
gated. In the first case we consider a circular hole. In contrast, a piezoelectric Zirconate Titanate
(PZT-5H) with the material constants

C11 = 126.0GPa, C12 = 84.1GPa, C22 = 117.0GPa, C66 = 23.0GPa,
e21 = −6.5C/m2, e22 = 23.3C/m2, e16 = 17.0C/m2,

κ11 = 15.04C/(GVm), κ22 = 13.0C/(GVm) (34)

and the mass density ρ = 7500kg/m3 is applied in the second case for the fiber. To point out
the influence of the hole and the piezoelectric fiber on the dynamic intensity factors Epoxy is
chosen for the fiber in the third computation. This corresponds to a crack in a homogeneous



plate. The spatial discretization of the external boundary is performed by an element-length of
1.0mm. The circular interface and the upper crack-face are approximated by 20 elements. A
normalized time-step of cL∆t/h = 0.06 is chosen, where cL is the longitudinal wave velocity.
The numerical results of the time-domain BEM are shown in Fig. 2.
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Figure 2: Normalized dynamic stress intensity factors of the three investigated configura-
tions

The normalized dynamic mode-I and mode-II stress intensity factors of both crack-tips show a
similar behavior. The curves of the homogeneous case are between the corresponding results of
the fiber and hole configuration. The peak values of the left and the right crack-tip are nearly
identical. In contrast, the mode-I stress intensity factors of the plate with the fiber and the
hole show significant differences between both crack-tips. The right crack-tip is shielded by
the hole which results in the lowest maximum peak value of all normalized dynamic mode-I
stress intensity factor curves. On the other side the highest dynamic mode-II stress intensity
factor is obtained. As clearly seen in Eqs. (33) and (34) the piezoelectric Zirconate Titanate
has significant higher elastic constants than Epoxy. As a consequence the fiber increases the
stiffness of the whole rectangular plate. Nevertheless the highest normalized dynamic mode-I
stress intensity factor is obtained at the right crack-tip for the fiber configuration.
A square plate with a crack across the interface between the fiber and the matrix

In the next example a square plate with a crack across the interface between the fiber and the
matrix is investigated. As depicted in Fig. 3 the cracked plate is subjected to an impact tensile
loading σ(t) = σ0H(t) normal to the crack-faces on the upper and the lower boundary. On
the left and the right boundary the mechanical stresses are zero. The geometrical data are
h = 20.0mm, r = h/2 and 2a = 4.8mm.

As in the first example the material properties given in Eqs. (33) and (34) are considered for
the matrix and the piezoelectric fiber. For spatial discretization the external boundary and the
interface are discretized by a uniform mesh with an element-length about 1.0mm. The upper
crack-face is divided into 16 elements. A normalized time-step cL∆t/h = 0.06 is used. The
crack-faces are treated as electrically impermeable described by Eq. (12). The normalized
dynamic intensity factors obtained by the time-domain BEM are given in Fig. 4.

As clearly observed the normalized dynamic stress intensity factors for the left and the right
crack-tip show a quite different behavior. The dynamic stress intensity factor for the right
crack-tip is considerably larger than that for the left crack-tip. This is very interesting since the
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Figure 3: A crack across the interface between the fiber and the matrix in a square plate
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Figure 4: Normalized dynamic intensity factors of the left (A) and the right (B) crack-tip

elastic constants of the piezoelectric fiber (PZT-5H) are much higher than those of the matrix
(Epoxy). The left crack-tip is inside the passive non-piezoelectric matrix and as a consequence
the electrical displacement intensity factor is zero. Although the cracked plate is subjected to a
pure mechanical impact loading a significant electrical displacement intensity factor is obtained
at the right crack-tip. This is mainly induced by the coupling between the mechanical and the
electrical field as well as the transient dynamic effects.
Interface crack in a square plate between the fiber and the matrix

In the last numerical example, we consider an interface crack in a square plate between the
central fiber and the matrix as shown in Fig. 5. The geometry is prescribed by h = 20.0mm,
r = h/2 and 2a = 14.0mm. On the upper and the lower boundary an impact tensile loading
σ(t) = σ0H(t) is applied.
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Figure 5: An interface crack in a square plate between the central fiber and the matrix

PZT-5H with the material properties given in Eq. (34) is used for the fiber (domain II). Barium
Titanate (BaTiO3) with the material constants

C11 = 150.0GPa, C12 = 66.0GPa, C22 = 146.0GPa, C66 = 44.0GPa,
e21 = −4.35C/m2, e22 = 17.5C/m2, e16 = 11.4C/m2,

κ11 = 9.87C/(GVm), κ22 = 11.2C/(GVm) (35)

and the mass density ρ = 5800kg/m3 is chosen for the matrix (domain I). The external bound-
ary and the interface are divided into elements with a length about 1.0mm. The interface crack
is divided into 20 elements. A normalized time-step cL∆t/h = 0.06 is used.
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Figure 6: Normalized dynamic intensity factors of the interface crack

The normalized dynamic intensity factors for the impermeable (ip.), permeable (p.) and semi-
permeable (sp.) crack-face boundary conditions (12)-(14) are shown in Fig. 6. The relative
permittivity κr = 40 is used in the computations for the semi-permeable crack-face conditions.
The elastic waves induced by the mechanical impact need some time to reach and excite the



crack. The global behavior of the dynamic intensity factors is very similar. It can be clearly
seen, that the electrical permittivity of the medium inside the crack has a significant influence.
Here again a high electrical displacement intensity factor is obtained even for a pure mechanical
impact loading.
Conclusions

The transient dynamic analysis of piezoelectric fiber composites with cracks of arbitrary shape
is presented in this paper. The developed symmetric Galerkin time-domain BEM is an attractive
tool to compute the dynamic intensity factors. The formulation is general without limitations
on the crack geometry, loading configuration and poling directions. The investigated numerical
examples indicate a significant influence of the piezoelectric fiber and the transient dynamic
loading on the normalized intensity factors.
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