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Abstract

In this paper, the values of Beta function B(x, y) at (−n, y), (x,−m), (−n,−m) for n,m =
0, 1, 2, · · · , x, y 6= 0, 1, 2, · · · are redefined and some recurrence formulas on the partial deriva-
tives Bp,q(x, y) = ∂q+p

∂xp∂yq
B(x, y) of the Beta function are established in Mathematica,where p, q

are the positive integers, and x, y are complex numbers, When x = n, n+ 1
2 , y = m,m+ 1

2 and
n,m = 0,±1,±2, · · · , Bp,q(x, y) can be expressed as Riemann zeta function. We provide a fast
algorithm, give its implementation in Mathematica, obtain closed forms of many generalized
integrals and achieve high-precision calculation of these integrals.

Keywords: Riemann zeta function; Beta Function; Partial derivatives of the Beta Function;
high-precision.
Introduction

In Mathematical software such as Mathematica, Maple and Matlab there are special functions,
and the Beta function is one of them. By partial derivatives of the Beta function some general-
ized integral can be calculated. For example∫ 1

0
tx−1(1− t)y−1lnpt lnq(1− t)dt =Bp,q(x, y), (1.1)

where Bp,q(x, y) = ∂p+q

∂xp∂yq
B(x, y). However, we note that although the following integral exists

∫ 1

0
t−2(1− t)−2lnpt lnq(1− t)dt (1.2)

for integer p, q ≥ 2, but Bp,q(−1,−1) =∞(D[D[Beta[xx, yy], {xx, p}]/.xx→ −1{yy, q}]/.
yy → −1) in Mathematica. By Mathematica symbolic integral, the closed form of the integral
(1.2) can also be obtained for smaller p, q, but very time consuming, and the closed form of
the integral (1.2) are difficult to obtain for larger integer p, q. By closed form, we mean that the
integral can be expressed analytically in terms of a finite number of Riemann zeta functions and
some constant π and the Euler-Mascheroni constant γ, etc.

The Beta function was the first known scattering amplitude in string theory, first conjectured by
Gabriele Veneziano. It also occurs in the theory of the preferential attachment process, a type
of stochastic urn process[1,2], the supersymmetric gauge theories[3] and other physical[4-5].

For Bp,q(x, y) we have established a recurrence formula by the neutrix calculus[6-8]. In this
article, in Mathematica, we give the function DBeta of the calculating Bp,q(x, y) for positive
integers p and q and complex numbers x and y. Through a number of examples show that
our program is very effective is better in the calculation of the closed form and the numerical
integration.



In the following sections, we introduce additional definitions of the Beta function, some re-
currence formulas and an algorithm for calculating the values of partial derivatives of the Beta
function.
Software Summary

Manuscript title: Remark on Beta Function and it’s Partial Derivatives in mathematca.

Authors: Huizeng Qin, Youmin Lu Nina Shang

Title of program: BetaAll (for computing the Beta Function B(x, y) in all complex values of
x and y), DBeta (for computing partial derivatives ∂p+q

∂xp∂yq
B(x, y) of the Beta Function in all

complex values of x and y).

Licensing provisions: None

Computer: ACPI Multiprocessor PC.

Operating system: Microsoft windows XP, but does not depend on the particular operating
system.

Programming language used: Mathematica 9

Memory required to execute with typical data: 2 Megabytes.

CPC Library Classification: 6.5 Software including Parallel Algorithms

Solution method: For the partial derivatives of the Beta Function, the recurrence formulas
(2.5),(2.6), (2.7)-(2.9) and (2.12) in this paper are employed. BetaAll is composed of the fol-
lowing five key subprograms: DBeta, PolyGammaAmend, DPochhammer, DBeta1 and DBeta2.
BetaAll is based on the formulas (2.2)-(2.4) and Beta in Mathematica. PolyGammaAmend is
based on the formulas (2.13)-(2.20). DPochhammer is based on the formula (2.11). DBeta1 is
based on the formulas (2.5) and (2.6) for x and x+ y 6= 0,−1,−2, · · · . DBeta2 is based on the
formulas (2.7)-(2.9) and (2.12) for x = −1,−2, · · · or y = −1,−2, · · · or x+y = −1,−2, · · · .
Nature of the problem: The Beta function B(x, y) is a very important special function. Many
mathematical softwares have defined inherent function (for exampleBeta[x, y] in Mathematica)
for computing the Beta function B(x, y). However, wnen x = −1,−2, · · · or y = −1,−2, · · · ,
Beta[x, y] is not defined in Mathematica, and similar problem exists in other mathematics soft-
ware. In addition, it is possible to use symbolic deferentiation and integration in Mathematica
to obtain the partial derivatives of the Beta function, but it is very inefficient in speed and can
rarely get the closed forms(it cannot get the closed form although it exists). Therefore, we
give an algorithm that calculates the values of Beta function and its partial derivetives in the
entire complex plane. In this way, one can obtain the closed forms of all integrals that can be
expressed in terms of partial derivatives of Beta function.

Typical running time: The running time of BetaAll depends strongly on p, q, x, y and the number
of bits required by computation precision. BetaAll is 30-10000 times faster than Integrate in
Mathematica. As the number of bits for precision increases, the advantage of BetaAll becomes
more significant.

The purpose of the program design: This process is designed to calculate the values of the
partial derivatives of the Beta function. Thus, it can be used to achieve fast and high-precision
calculation of generalized integrals that can be represented in terms of partial derivatives of
the Beta function, regardless of computing power. The speed of this process is far superior to
Integrate and NIntegrate in Mathematica.



Additional Definition and a Recurrence Formula of Partial derivatives of the Beta Func-
tion

The values of x and y must be real and non-negative for the Beta function B(x, y) in Matlab.
Although they may be complex in Mathematica and Maple, the definitions there

B(−n, y) =∞, B(x,−m) =∞, B(−n,−m) =∞, n,m = 0, 1, 2, · · · , (2.1)

where x and y is not an integer, lead to the following unreasonable results:

B(−1, 1
2) =∞, B(−3

2 ,
1
2) = 0, B(−1, 5

2) =∞, B(−3
2 ,

5
2) = π.

To remedy this problem, it is necessary to modify (2.1). For this reason, we do give some
additional definitions and results[9-12].

For B(x, y) the following definitions are given for x > 0, y > 0 and n,m = 1, 2, · · · :

B(n,−m) = B(−m,n) =
n−1∑

l=0,l 6=m
C l
n−1

(−1)l
l −m

,m = 0, 1, 2, · · · , n = 1, 2, · · ·

=


(−1)m(m−1)!(n−m)!

n! , n = 1, 2, · · · ,m,m = 1, 2, · · ·
(−1)n(m−1)!(Hn−Hm−n−1)

n!(m−n−1)! , n = m+ 1,m+ 2, · · · ,m = 1, 2, · · · , n (2.2)

B(−n, y) = (−1)nCn
y−1 ((y − n− 1)B0,1(y − n− 1, 1) +Hn) ,
y 6= 0,−1,−2, · · · ,

B(x,−m) = B(−m,x), x 6= 0,−1,−2, · · · ,
(2.3)

where Hn =
n∑
l=1

1
l
, and

B(−n,−m) = −
m−1∑
i=0

(
n+ i
i

)
1

m−i −
n−1∑
j=0

(
m+ j
j

)
1

n−j . (2.4)

We obtain the following three groups of recurrence formulas of Bp,q(x, y).
I. For integers q, p ≥ 1 and complex numbers x, y satisfying x, y, x+ y 6= 0,−1,−2, · · · ,

B0,q(x, y) =
q−1∑
j=0

Cj
q−1

(
ψ(q−1−j) (y)− ψ(q−1−j) (x+ y)

)
B0,j(x, y),

Bp,q(x, y) =
q−1∑
j=0

Cj
q−1

(
ψ(q−1−j) (y)− ψ(q−1−j) (x+ y)

)
Bp,j(x, y)

−
p−1∑
k=0

Ck
p

q−1∑
j=0

Cj
q−1ψ

(p+q−1−k−j) (x+ y)Bk,j(x, y).

(2.5)

or
Bp,0(x, y) =

p−1∑
k=0

Ck
p−1(ψ(p−1−k)(x)− ψ(p−1−k)(x+ y))Bk,0(x, y),

Bp,q(x, y) =
p−1∑
k=0

Ck
p−1(ψ(p−1−k)(x)− ψ(p−1−k)(x+ y))Bk,q(x, y)

−
q−1∑
j=0

Cj
q

p−1∑
k=0

Ck
p−1ψ

(p+q−1−k−j)(x+ y)Bk,j(x, y)

(2.6)



where ψ(x) is the digamma function defined by

ψ(x) = d

dx
ln Γ(x) = −γ − 1

x
+
∞∑
l=1

(1
l
− 1
l + x

)
.

II. For integers q, p, n,m ≥ 0 and complex numbers x, y satisfying x, y 6= 0,−1,−2, · · · ,

Bp,q(−n, y) = 1
(p+1)an+1,1(−n)

p+1∑
u=0

Cu
p+1

q∑
v=0

Cv
q an+1,p+q+1−u−v(y − n)Bu,v(1, y)

− 1
(p+1)an+1,1(−n)

p−1∑
u=0

Cu
p+1an+1,p+1−u(−n)Bu,q(−n, y).

(2.7)

Bp,q(x,−m) = 1
(q+1)am+1,1(−m)

p∑
u=0

Cu
p

q+1∑
v=0

Cv
q+1am+1,p+q+1−u−v(x−m)Bu,v(x, 1)

− 1
(q+1)am+1,1(−m)

q−1∑
v=0

Cv
q+1am+1,q+1−v(−m)Bp,v(−m, y)

. (2.8)

and

Bp,q(−n,−m) = (−1)n+m

(q+1)(p+1)n!m!

p+1∑
u=0

Cu
p+1

q+1∑
v=0

Cv
q+1an+m+2,p+q+2−u−v(−n−m)Bu,v(1, 1)

− (−1)n
(p+1)n!

p−1∑
u=0

Cu
p+1an+1,p+1−u(−n)Bu,q(−n,−m)

− (−1)m
(q+1)m!

q−1∑
v=0

Cv
q+1am+1,q+1−v(−m)Bu,v(−n,−m)

− (−1)n+m

(q+1)(p+1)n!m!

p−1∑
u=0

Cu
p+1

q−1∑
v=0

Cv
q+1an+1,p+1−u(−n)am+1,q+1−v(−m)Bu,v(−n,−m).

(2.9)
where

an,i(x) = di

dxi
(x)n = i!

n∑
k=i

Ci
k(−1)n−ks(n, k)xk−i, i = 1, 2, · · · , (2.10)

(x)n = x(x+ 1) · · · (x+ n− 1) =
n∑
k=1

(−1)n−ks(n, k)xk, (2.11)

and s(n, k) is the Stirling number of the first kind.

III. For integers q, p, n,m ≥ 0 and complex numbers x, y satisfying x+y = 0,−1,−2, · · · , Rex 6=
0,−1,−2, · · · , we have the following recurrence relations

Bp,q(x, y) = 1
(x)n(y)m

p∑
u=0

Cu
p

q∑
v=0

Cv
q an+m,p+q−u−v(x+ y)Bu,v(x+ n, y +m)

− 1
(y)m

q−1∑
v=0

Cv
q am,q−v(y)Bp,v(x, y)− 1

(x)n

p−1∑
u=0

Cu
p an,p−u(x)Bu,q(x, y)

− 1
(x)n(y)m

p−1∑
u=0

Cu
p

q−1∑
v=0

Cv
q an,p−u(x)am,q−v(y)Bu,v(x, y).

(2.12)

Now we are ready to consider the closed form of Bp,q(x, y). It is well-known that the digamma



function ψ(x) has the following identities:

ψ(n+ x) = ψ(x) +
n−1∑
l=0

1
(l + x) , ψ(x− n) = ψ(x) +

n∑
l=1

1
(l − x) , (2.13)

ψ(k)(x) = k!(−1)k+1ζ(k + 1, x), k > 0, (2.14)

and
ψ(k)(n+ x) = k!(−1)k+1ζ(k + 1, x) + (−1)kk!

n−1∑
l=0

1
(l+x)k+1 , k > 0

ψ(k)(x− n) = k!(−1)k+1ζ(k + 1, x) + k!
n∑
l=1

1
(l−x)k+1 , k > 0,

(2.15)

where ζ(s, x) is the Hurwitz zeta function defined by

ζ(s, x) =
∞∑
l=0

1
(l + x)s , ζ(s, 0) = ζ(s, 1).

The Hurwitz zeta function ζ(s, x) also has the following identity

ζ(s, n+ x) = ζ(s, x)−
n−1∑
l=0

1
(l+x)s ,ζ(s,−n+ x) = ζ(s, x) +

n∑
l=1

1
(x−l))s ,

ζ(s,12) =(2s − 1)ζ(s).
(2.16)

particularly[13],

ζ(k, 0) =
{

γ, k = 1
ζ(k), k > 1 , ζ(k,12) =

{
γ + 2 ln 2, k = 1(

2k − 1
)
ζ(k), k > 1 , (2.17)

and

ζ(2n+ 1, 1
3)

ζ(2n+ 1, 2
3)

}
= 32n+1−1

2 ζ(2n+ 1)

±
√

3
2π

(
(2n+ 2 + 32n+2) ζ(2n+ 2)− 2

n−1∑
l=0

32n−2lζ(2n− 2l)ζ(2l + 2)
) (2.18)

ζ(2n+ 1, 1
4)

ζ(2n+ 1, 3
4)

}
= 22n(22n+1 − 1)ζ(2n+ 1)

± 1
2π (2n+ 2 + 42n+2) ζ(2n+ 2)− 2

n−1∑
l=0

42n−2lζ(2n− 2l)ζ(2l + 2)
(2.19)

ζ(2n+ 1, 1
6)

ζ(2n+ 1, 5
6)

}
= 62n+1−32n+1−22n+1+1

2 ζ(2n+ 1)

± 1
2
√

3π (62n+2 − 32n+2) ζ(2n+ 2)− 2
n−1∑
l=0

(
62n−2l − 32n−2l

)
ζ(2n− 2l)ζ(2l + 2)

(2.20)

where ζ(1) =γ.

Remark If x = ±n, 1
2 ±n, y = ±m, 1

2 ±m,n,m = 0, 1, 2, · · · , Bp,q(x, y) certainly has closed
form. If x, y = 1

3±n,
1
4±n,

1
6±n, n = 0, 1, 2, · · · , Bp,q(x, y) may have closed form. Otherwise,

Bp,q(x, y), p, q > 1 does not seem to have closed form.



Algorithms for Calculating Bp,q(x, y) and comparison with the symbolic(numerical) inte-
gration in Mathematica

Algorithm

The source code BetaAll[x, y] and DBeta[x, y, p, q, all] that calculates the values of B(x, y)
and Bp,q(x, y) is placed in the file beta.nb(Mathematica file format). DBeta[x, y, p, q, all]
calls five key subprograms BetaAll[x,y], PolyGammaAmend[k,x], DPochhammer[k,x], DBe-
ta1[x,y,p,q,all] and DBeta2[x,y,p,q,all]. The following is our specific algorithm.

1) To obtain closed form, PolyGammaAmend performs the calculation of (2.13)-(2.18) when
x is a real number or x = a ± n, a = 0, 1

2 ,
1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6 , n = 0, 1, 2, 3, · · · . Otherwise,

PolyGamma from Mtathematica replaces PolyGammaAmend.

2) BetaAll does the calculation of (2.2)-(2.4) when xor y = 0,−1,−2. Otherwise, Beta from
Mtathematica replaces BetaAll.

3) DPochhammer[k, x] does calculation of (2.10).

4) DBeta1[x, y, p, q, all] is to calculate the values of Bp,q(x, y) by using (2.5) and (2.6) when
x, y, x+y 6= 0,−1,−2, · · · . The parameter all indicates whether all the values ofBi,j(x, y), i =
0, 1, 2, · · · , p, j = 0, 1, 2, · · · q are displayed or only the value ofBp,q(x, y) is displayed depend-
ing on all is positive or zero.

5) DBeta[x, y, p, q, all] calls BetaDl[x, y, p, q, all] directly when x, y, x + y 6= 0,−1,−2, · · · .
Otherwise, DBeta[x, y, p, q, all] calls DBeta2[x, y, p, q, all] that calculates the values ofBp,q(x, y)
by using (2.7)-(2.9) and (2.12) and calling two subprograms BetaAll[x, y, p, q, all] and DPochha-
mmer[k, x].

The above algorithm is run in the mathematics symbolic computation system. If the numerical
calculation, we will be in front of the source code to add a ”N”, for example, change BetaAll to
NBetaAll and the above algorithm is run in the specified precision Prec. Therefore, in beta.nb
there are a public constants: Prec, which is for the calculation precision.

Comparison with the symbolic(numerical) integration in Mathematica

In order to show how much more efficient of DBeta and NDBeta is than the corresponding
programs of Mathematica, we apply it, the Mathematica symbolic integration (Integrate) and
the Mathematica numerical integration (NIntegrate) to a couple more integrals with different
parameters and display the running results in Tables 1 and 2.

Table 1. Comparison of Several Algorithms
x, y p, q Time p, q Time p, q Time

2, 2 4, 4
I
B
BD

113.1787
0.046800
0.873606

6, 4
I
B
DB

137.9672
0.078001
2.199614

6, 6
I
B
DB

159.0118
0.156001
6.162039

2,− 5
2 3, 3

I
B
BD

57.08076
0.483603
6.162039

4, 5
I
B
BD

87.87536
1.341609
80.32491

5, 5
I
B
BD

123.6307
5.132432
187.9500

−1, 5
2 3, 4

I
B
BD

106.6266
1.887612
∗0.031200

4, 5
I
B
BD

126.7664
5.226033
∗0.062400

5, 5
I
B
BD

127.8272
17.61251
∗0.046800

−1,−1 2, 2
I
B
BD

59.29598
0.062400
∗0.046800

3, 2
I
B
BD

69.42044
0.312002
∗0.031200

4, 4
I
B
BD

161.2114
3.915625
∗0.078001

In Table 1, letters I, B and BD represent Integrate[tx−1(1−t)y−1Log[t]pLog[1−t]q, [t, 0, 1}],DBeta-



[x, y, p, q, 0] and D[D[Beta[xx, yy], {xx, p}]/.xx → x, {yy, q}]/.yy → y], respectively. The
data shows that B is much more efficient in time than I and BD, and the rate ranges from 7 to
2400. An asterisk in front the time consumed indicates that the algorithm is valid.

Table 2 Comparison of NDBeta[x, y, p, q, 0] and
NIntegrate[tx-1(1− t)y−1Log[t]pLog[1-t]q, {t, 0, 1},WorkingPrecision− > Prec]

x, y p, q T32, rr T64, rr T128, rr T256, rr

2, 2 6, 6 NI
NB

0.046800, 10−32

0.015600, 10−47
0.156001, 10−65

0.031200, 10−100
0.499203, 10−129

0.015600, 10−207
1.856412, 10−257

0.015600, 10−420

− 5
2 ,−

7
3 6, 6 NI

NB
0.062400, 10−32

0.031200, 10−34
0.280802, 10−65

0.031200, 10−87
0.795605, 10−129

0.031200, 10−194
2.761218, 10−257

0.031200, 10−407

−4,− 5
2 6, 6 NI

NB
0.062400, 10−32

0.062400, 10−39
0.202801, 10−65

0.062400, 10−92
0.717605, 10−117

0.062400, 10−199
2.511616, 10−257

0.062400, 10−412

−4,−5 6, 6 NI
NB

0.046800, 10−32

0.093601, 10−38
0.187201, 10−64

0.093601, 10−91
0.577204, 10−129

0.093601, 10−198
2.402415, 10−257

0.093601, 10−411

In this table, NI and NB represent

NIntegrate[tx−1(1− t)y−1Log[t]pLog[1− t]q, {t, 0, 1},WorkingPrecision→ Prec]

and NDBeta[x, y, p, q, 0], respectively. In order to reduce the accumulated calculation accuracy
take [5Prec/3]. The subindex of T indicates the computing accuracy requirement and rr is
the relative error. From Table 2, we see that the running time of NDBeta[x, y, p, q, 0] is not
substantially affected by the specified accuracy and much smaller than NIntegrate[tx−1(1 −
t)y−1Log[t]pLog[1− t]q, [t, 0, 1},WorkingPrecision-¿Prec] and its efficiency is more significant
especially in high-precision. It is noteworthy that the relative error of the BetaD[x, y, p, q, 0] is
always less than the specified one.
Partial derivatives of the Beta Function used in some generalized integral calculation

Many generalized integrals can be expressed in terms of Beta function and its partial derivatives.
Thus, a faster and high accuracy algorithm for calculating the values of the Beta function and
its partial derivatives can speed up and increase the accuracy of the calculation of generalized
integrals. There are many identities in this respect. For Example [14],

∫ 1
0 t

x−1(1− t)y−1dt = B(x, y) [Rex,Rey > 0]∫∞
0

tx−1

(1+t)x+y dt = B(x, y) [Rex > 0, Rey > 0]∫ 1
−1

(1+t)2x−1(1−t)2y−1

(1+t2)x+y dt = 2x+y−2B(x, y) [Rex > 0, Rey > 0]∫ 1
0
tx−1+ty−1

(1+t)x+y dt =
∫∞

1
tx−1+ty−1

(1+t)x+y dt = B(x, y) [Rex,Rey > 0]∫ 1
0

(1+t)x−1(1−t)y−1+(1+t)y−1(1−t)x−1

2x+y−1 dt = B(x, y) [Rex > 0, Rey > 0]∫ π
2

0 sin2x−1 t cos2y−1 tdt = 1
2B(x, y) [Rex,Rey > 0]∫∞

−∞
e2iyt

(2 cosh t)2xdt = B(x+iy,x−iy)
2 [Rex > 0, y is a real]∫∞

−∞
e−2yt

(2 cosh t)2xdt = B(x−y,x+y)
2 [Rex > 0, Rex > |Rey|]∫∞

0
cosh 2yt

(2 cosh zt)2xdt = B(x+ y
z
,x− y

z
)

4z [Rex > |Rey|]∫ 1
0 (1− tz)x−1ty−1dt = 1

z
B(x, y

z
)
[
Rey

z
, Rex > 0

]
∫∞

0 e−xt sinhy ztdt = 1
2y+1z

B( x2z −
y
2 , y + 1) [Rez > −1, Rezy > 0]∫∞

0
e−xt

cosh2y+1 xt
dt = 22y−2

x
B(y, y)− 1

2xy [x, y > 0]∫∞
0 e−xt(cosh zt− 1)ydt = B(x

z
−y,2y+1)
2yz

[
Rey > −1

2 , Rex > Rezy,Rez > 0
]

(4.1)



and

∫ 1
0

( t
t+z )

x( 1−t
t+z )

y

t(1−t) dt =


B(x,y)
zy(1+z)x , Rex,Rey > 0, Re(x+ y) < 1,−1 < z < 0(

1
z

)y ( 1
1+z

)x
B(x, y), Rex,Rey > 0, z /∈ [−1, 0]

∫ π
2

0

(
cos2 t

cos2 t+z

)x(
sin2 t

cos2 t+z

)y
sin t cos t dt =


B(x,y)

2zy(1+z)x , Rex,Rey > 0, Re(x+ y) < 1,−1 < z < 0
1
2

(
1
z

)y ( 1
1+z

)x
B(x, y), Rex,Rey > 0, z /∈ [−1, 0]

(4.2)

By the means of (4.1) and (4.2), we can express many generalized integrals in terms of partial
derivatives of the Beta function. We give several examples here.

1) When p and q are non-negative integers, p+Rey > 0 and q +Rex > 0, we have

∫ 1

0

(
(−1)qtx−1(1 + t)−x−y lnp t

1+t lnq(1 + t)
+(−1)pty−1(1 + t)−x−y lnq t

1+t lnp(1 + t)

)
dt = Bp,q(x, y), (4.3)

and ∫ 1

0

tx−1

(1 + t)2x lnp t

1 + t
lnp(1 + t)dt = (−1)p

2 Bp,p(x, x). (4.4)

2) When p and q are non-negative integers,we have

∫ 1
0

1
t(1−t)

(
t
t+z

)x (1−t
t+z

)y
lnp t

t+z lnq 1−t
t+zdt

=
(

1
z

)y ( 1
1+z

)x p∑
j=0

Cj
p lnp−j( 1

1+z )
q∑

k=0
Ck
q lnq−k 1

z
Bj,k(x, y). (4.5)

for Rex,Rey > 0, z /∈ [−1, 0].
3) When p and q are non-negative integers, and Rex > |y| , y is real, we have

∫∞
0

t2q cosh 2yt lnp cosh t
(2 cosh zt)2x lnp (2 cosh zt) dt

= 1
2p+2q+2z2q+1

p∑
j=0

Cj
p

2q∑
k=0

(−1)kCk
2qBj+2q−k,p−j+k(x+ y

z
, x− y

z
)

(4.6)

and ∫∞
0

t2q+1 sinh 2yt lnp(2 cosh zt)
(2 cosh zt)2x dt

= 1
2p+2q+3z2q+2

p∑
j=0

Cj
p

2q+1∑
k=0

(−1)kCk
2q+1Bj+2q+1−k,p−j+k(x+ y

z
, x− y

z
).

(4.7)

4) When p and q are non-negative integers, α > 0 and Rex > |Imy| , we have

∫∞
−∞

tqe−2yt lnp(2 cosh t)
(2 cosh t)2x dt = (−1)p+q

2p+q+1

p∑
j=0

Cj
p

q∑
k=0

(−1)kCk
qBk+j,p+q−k−j(x− y, x+ y)

p, q are integer, p, q ≥ 0, Rex > |Rey| .
(4.8)

5) When p and q are non-negative integers, Rez > 0, p+Rey
z

and q +Rex > 0, we have

∫ 1

0
(1− tz)x−1ty−1 lnp(1− tz) lnq tdt = 1

zq+1Bp,q(x,
y

z
). (4.9)



6) Letting t = sin2 u or cos2 u in (4.5), we have

∫ π
2

0

(
cos2 t

cos2 t+z

)x(
sin2 t

cos2 t+z

)y
sin t cos t lnp cos2 t

cos2 t+z lnq sin2 t
cos2 t+zdt

= 1
2

(
1
z

)y ( 1
1+z

)x p∑
j=0

Cj
p lnp−j( 1

1+z )
q∑

k=0
Ck
q lnq−k 1

z
Bj,k(x, y),

(4.10)

for integer, p, q ≥ 0, Rex,Rey > 0, z /∈ [−1, 0].
7) When p and q are non-negative integer, q +Rex > 0 and Rey > 0, we have∫ ∞

0
tx−1(1 + t)−x−y lnp t

1 + t
lnq(1 + t)dt = (−1)qBp,q(x, y). (4.11)

For x = ±n, 1
2 ± n, y = ±m, 1

2 ± m,n,m = 0, 1, 2, · · · , Bp,q(x, y) and Bp,q(x + y, x − y)
always exists closed form, so the generalized integral (4.3)-(4.11), which also exist closed form.
However, the use of symbolic integration (Integrate) in Mathematica, closed forms of these
integrals are difficult to obtain. For example, in Mathematica we have the following results for
the generalized integral (4.3).

x = 2; y = 1/2; p = 1; q = 1;
Timing[s1 = Integrate[ tˆ(x−1)Log[ t

1+t ]ˆp∗Log[ 1
1+t ]ˆq

(1+t)ˆ(x+y) + p∗tˆ(y−1)Log[ t
1+t ]ˆq∗Log[ 1

1+t ]ˆp
(1+t)ˆ(x+y) , {t, 0, 1}]]

Timing[s2 = Simplify[DBeta[x, y, p, q, 0]]]
N [s1− s2, P rec]

{96.736220, 1
27(320− 116

√
2]− 30π2 + 72ArcSin[

√
2]2 − 72ArcSinh[1]− 27Log[2]2−

4i
√

2HypergeometricPFQ[{−3
2 ,−

3
2 ,−

3
2 ,

1
2}, {−

1
2 ,−

1
2 ,−

1
2}, 2]−

12iπ(−13 + Log[8])− 64Log[8]− 72IArcSin[
√

2](1 + Log[4] + 2Log[4− 2
√

2])−
96Log[−1 +

√
2] + 108Log[2]Log[1 +

√
2] + 144Log[1 +

√
2]2 −

144Log[1 +
√

2]Log[2 +
√

2]− 216PolyLog[2,− 1√
2 ] +

288Log[1 +
√

2] + 216PolyLog[2, 1−
√

2] + 72PolyLog[2,−3 + 2
√

2])}
{0.,− 2

27(9π2 + 16(−10 + Log[64]))}
0. ∗ 10−111 + 0. ∗ 10−112i

When p, q > 1, the use of the symbolic integration even above complex can not be obtained.

However, the right-hand sides((4.*)R) of the equations (4.3)-(4.11) give a high accuracy and
fast algorithm to calculate the integrals of the left-hand side((4.*)L). In order to verify the
correctness of the formulas (4.3)-(4.11) and further show the high accuracy and time efficiency
of our algorithm, the following numerical results are given in Mathematica.

Table 3 Comparison of numerical integration for (4.3)-(4.5)
p, q, x, y T32, rr T64, rr T128, rr Integral value

(4.3)L

(4.3)R
4, 4, -2, i− 3 0.1716, 10−32

0.0156, 10−46
0.5616, 10−64

0.0156, 10−99
1.5600, 10−128

0.0156, 10−206
−1.554939 · · ·
+1.779627 · · · i

(4.4)L

(4.4)R
4, 4, - 5

2 +i, -3+i
0.1404, 10−32

0.0156, 10−50
0.3900, 10−64

0.0156, 10−102
1.2636, 10−128

0.0156, 10−210
−2.114631 · · ·
−2.863698 · · · i

(4.5)L

(4.5)R
, z= 1

2 3, 2, 1
3 ,

1
5

0.1248, 10−14

0., 10−51
0.2028, 10−23

0.0156, 10−104
0.4836, 10−27

0.0156, 10−211 −279.808345 · · ·

(4.5)L

(4.5)R
, z=− 2 3, 3, 1

3 ,
1
4

0.1872, 10−13

0., 10−51
0.4056, 10−18

0.0156, 10−104
0.7800, 10−27

0.0156, 10−211
−54904.915 · · ·
+28376.28 · · · i



In particular, for the left integral((4.5)L) of the formula (4.5), the error of numerical integration
always exists regardless of the calculation precision. When the numerical computation in Math-
ematica is used for calculating values of integrals, the error does not much improve no matter
how the accuracy requirement is increased.

It is noteworthy that we found symbol integration and numerical integration of inconsistent
results in Mathematica.

z = −1/2;x = 1/4; y = 1/5;Prec = 32;
Timing[s1 = NIntegrate[

(
t
z+t

)
ˆx
(

1−t
z+t

)
ˆy 1

t(1−t) , {t, 0, 1},WorkingPrecision− > Prec]]
Timing[s2 = N [Integrate[

(
t
z+t

)
ˆx
(

1−t
z+t

)
ˆy 1

t(1−t) , {t, 0, 1}], P rec]]
Timing[s0 = 1

zˆy

(
1

1+z

)
ˆy ∗NBetaAll[x, y]]

{s1− s0, s2− s0, s3− s0}
{0.124801, 9.3442494430451904923601953855976 + 6.7887335956884325541842812213085I}
{1.419609, 9.3462960217122886259805243287725− 6.7904815391012934935031911000193I}

{0., 9.3462960217122886259805243287725073193521592331001509−
6.7904815391012934935031911000192799983188576389449694I}

{−0.0020465786670981336203289431749 + 13.5792151347897260476874723213278i,
0.× 10−32 + 0.× 10−32}

Conclusions

By giving additional definition of the Beta function, the domain of the Beta function has been
extended to the entire complex plane. In the entire complex plane, we have established recursive
formulas on the partial derivatives of the Beta function. Applying these recursive formulas, we
give the conditions of the closed form of the generalized integral, which are expressed in terms
of partial derivatives of the Beta function. And for the numerical calculation, calculation speed
and accuracy have some improvements.
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