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Abstract

In clinical application, radiotherapy is the mainstay of cancer treatment. The deformable
image registration (DIR) is a medical imaging device which uses to assess how the tumor
changes in size and location. DIR is a very important medical guide in radiotherapy
treatment. The satisfactory treatment could be achieved if the exact location and extent
of target region are accurately determined, thus the surrounding organs could su¤er less
impact.

In computational �eld, the DIR has been studied over 30 years in the discipline of bio-
medical science. Due to the complexity of the physical phenomenon of a human body,
the development of deformable image models could not be derived uniquely. Many ap-
plications did not accomplish the clinically satisfactory level. To improve the treatment
�exibility, a high level of accuracy is indispensable in delivering right medical dose to each
radiotherapy treatment. Thus the deformable image registration remains to be attractive
and important research topics in the clinical �eld.

In general, the DIR is an optimization method used to measure how the tumor changes
in size and location. Several forms of deformable image registration models have been
established and solved by di¤erent numerical methods. This paper adopts the meshless
algorithm using the kernel-based collocation method to solve the concerned model. The
application and its formulation to the classical model of DIR algorithms are outlined.
The application to real-life case study and the corresponding results will be presented
and discussed in our further report.
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Introduction

One of the classical DIR model by Cachier et al [1] is established using the di¤usion of
spatial transformation; its governing equation is derived from Navier-stokes equation and
is given by

D =
(m� s)rs

jrsj2 + �2 j(m� s)j2
+

(m� s)rm
jrsj2 + �2 j(m� s)j2

; (1)

where m is moving image and s is the static image matrices, (m� s) are the di¤erential
forces between the moving image and the static image. The normalization factor � is
added to adjust the force strengths. This attempted to normalize the relations between
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the moving and static images so as to improve the registration convergence rate and
stability.

The function D = [ux; uy]
T is the displacement from the deformed image to the static

image. This model generates a mapping between the pro�le of tumor at the tth treatment
and the next pro�le of tumor at (t + 1)th treatment. The volumetric analysis and the
positional changes of the tumor can be monitored and then adaptive strategies can be
used during the course of treatment.

The present study will use the results from this classical Demons iterative algorithm as a
reference guide and be compared with results from the kernel radial collocation algorithm.
A real-life deformable image registration from a patient with prostate cancer is used as
a reference case study. One of the original CT image is shown in Figure (1)(a) and
the deformed CT images obtained from a di¤erent treatment period are shown in Figure
(1)(b).

Figure 1(a) Original

CT image

Figure 1(b)

Deformed CT image

Kernel-based Collocation Method

This paper focuses on kernel approximations in the form of radial basis functions and
apply to solve the di¤erential equation involved in the deformable image model. The
method of kernel approximation with radial basis function method have been re�ned
and diversi�ed for facilitating the needs of various types of di¤erential equations. The
basic idea of the radial basis interpolation by Hardy [2] is to approximate an unknown
displacement function fD(x) : x 2 
g by a RBF interpolant at a set of N distinct nodal
points X = fxi 2 
 : i = 1; 2; � � � ; Ng.
Let � : R+ ! R be a set of positive de�nite radial basis functions de�ned by

� = f� (kx� exjk)g x; exj 2 
;
on a �xed space on 
. Here � refers to a speci�c choice of RBF functions that is solely
dependent on the Euclidean distance k x� exj k between x and a �xed centre exj 2 Rd. A
suitable choice of the function for fD(xi) : i = 1; 2; � � � ; Ng can ensure the interpolation
smoothly passing through the given nodal points in X.

The chosen RBF interpolant for D can be expressed as a �nite linear combination of
� (kx�exik) and is given by the equation

D(x) =
NX
i=1

�i�(kx� exik); x;exi 2 
: (2)
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The unknown coe¢ cients f�i : i = 1; 2; � � � ; Ng can be determined by collocating

eD(xi) = D(xi); for i = 1; 2; : : : ; N; (3)

at a set of N distinct nodal points f(xi; yi); i = 1; 2; � � � ; Ng. This yields a system of linear
equations which can be expressed in the following matrix form

A�� = eD; (4)

where � = [�1; �2; : : : ; �N ]T are the unknown coe¢ cients and

eD = [ eD(x1); eD(x2); : : : ; eD(xN)]T :
Both � and eD are N � 1 column matrices, and A� = [�(xi � xj)]1�i;j�N is an N � N
coe¢ cient matrix.

Generally, the interpolation points in interior and boundaries are distinct and the chosen
radial basis function � 2 Rd is positive de�nite, the matrix A� is always non-singular, so
the linear system in (4) has a unique solution by Powell [3]. The unknown coe¢ cients �
can then be obtained uniquely by solving the system of linear equations

� = A�1
�
eD:

The approximated displacement matrixD can be evaluated once the unknown coe¢ cients
f�i; i = 1; � � � ; Ng are found.
To prevent the singularity, the radial kernel approximation is formulated by adding a
�nite number of polynomials into the interpolation system in (2). In the present study,
the RBFs interpolant D(x) in (2) is rewritten as

D(x) =
NX
j=1

�j�(jjx� xjjj) +
MX
k=1

bkqk(x); x 2 R2; 0 � m < N: (5)

The terms fqk(x) : k = 1; 2; � � � ;Mg are the radial kernel. In a given set X of distinct
nodes X = fxj 2 
 : j = 1; 2; � � � ; Ng � Rd, the approximation function in (5) would has
a unique solution if the system satis�es the condition

eD(xi) = D(xi); i = 1; 2; � � � ; N; (6)

and the following constraints

NX
j=1

�jqk(x) = 0; k = 1; 2; � � � ;M ; j = 1; 2; � � � ; N:

The resulting system can be organized in matrix form,�
A� Q
QT 0

� �
a
b

�
=

�
c
0

�
; (7)

where A� = �(kxi � xjk) is a square matrix, a and c are column vectors. Q = [qk(xi)] is
a N �M matrix and the unknown coe¢ cients b is M � 1 matrix given by
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Q =

26664
q1(x1) q2(x1) � � � qM(x1)
q1(x2) q2(x2) � � � qM(x2)
...

...
. . .

...
q1(xN) q2(xN) � � � qM(xN)

37775 ; [b] =

26664
b1
b2
...
bM

37775 :
The interpolation problem in (7) is solvable if the matrix of this system is

[e�] = � A� Q
QT 0

�
is non-singular. In the application of deformable image registration models, the concerned
displacement matrix D can then be determined by the above basis function subject to
the given initial values

D0(x; y) = 0;

m0(x; y) = ~m0(x; y);

s0(x; y) = ~s0(x; y):

In order to determine the deformable image mj at the jth iteration, the forward iterative
scheme is applied according to the following equation

m�j(x; y) =m�j�1(x; y) +Dj�1(x; y)rs0: (8)
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