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Abstract  

Stiffened composite plate has been widely used in many braches of engineering area and the 
demand of optimizing the cost of manufacturing is also very high. One of many approaches to 
minimize the cost is to optimize the weight of the structure. In this paper, an improved version 
of the Differential Evolution (DE) algorithm is adopted to solve for suitable values of the fiber 
angle and the thickness of the stiffened composite plate to achieve the structure with 
minimum weight. For computing the constrained conditions of stress and strain in the 
optimization process, the finite element analysis using the CS-DSG3 element is used. To 
verify the accuracy and the effectiveness of the algorithm, the numerical solutions obtained 
from the proposed method are compared with those of other available approaches. 

Keywords: Stiffened composite plate, Differential Evolution (DE), Cell-based smoothed 
discrete shear gap method (CS-DSG3), Optimization analysis. 

1. Introduction  

Nowadays, stiffened composite plates have been widely used in many branches of structural 
engineering such as aircraft, ships, bridges, buildings, etc. For its advantages in both bending 
stiffness and the amount of material in comparison with common bending plate structures, 
stiffened composite plate usually has higher economic efficiency in practical applications. 
However, choosing the best design that satisfies the working requirement is difficult. In 
addition, the complex mechanical behavior of composite materials also increases the 
difficulty of the problems related to their design [1]. In this case, the design optimization tools 
combined with numerical methods must be utilized. Design optimization is one of the most 
interesting research directions that brings a lots of profits in both life and industry. And so, 
methods for design optimization are also quickly developed. The optimization methods can be 
classified into two main groups: gradient-based and popular-based approach. Methods based 
on gradient information is fast but usually stuck in local solution and depended too much on a 
good initial point to obtain global optimal solution. T. Nguyen-Thoi et al [2] used SQP to find 
the optimal fiber orientations for stiffened composite plate, but the results still depend on the 
initial point to get the exact solution. To deal with such disadvantages, population-based 
global optimization methods are utilized alternatively. Marin et al. [3] used the genetic 
algorithm, including the application of elitism, which preserved the use of the Pareto front to 
optimize the design of a composite material-stiffened panel. Falzon and Faggiani [4] applied 
the genetic algorithm to improve the post-buckling strength of stiffened composite panels. 
And among many proposed global optimization algorithms, Differential Evolution (DE) 
firstly introduced by Storn and Price in 1997 [5] was one of the most potential algorithms. 
The DE has demonstrated excellently performance in solving many different engineering 
problems. Wang et al. [6] applied the DE for designing optimal truss structures with 
continuous and discrete variables. Wu and Tseng [7] applied a multi-population differential 
evolution with a penalty-based, self-adaptive strategy to solve the COP of the truss structures. 
Le-Anh et al. [8] using an adjusted Differential Evolution algorithm and a smoothed 
triangular plate element for static and frequency optimization of folded laminated composite 
plates. Ho-Huu et al. [9] proposed a new version of the DE to optimize the shape and size of 
truss with discrete variables. However, using the method in finding the global optimum 
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solution still gets highly computational cost. Hence, many approaches have been proposed to 
increase the effectiveness of the algorithm. Most recently, Ho-Huu et al. [10] also introduced 
two new improvement steps to increase the convergence of DE algorithm based on roulette 
wheel selection (ReDE). The new modified DE algorithm is applied for solving shape-and-
size optimization problem of truss structure with frequency constraints and show its high 
effectiveness.  
 
In this paper, this new improved version of the Differential Evolution (ReDE) algorithm is 
adopted to solve for suitable values of the fiber angle and the thickness of the stiffened 
composite plate to achieve the structure with minimum weight. For computing the constrained 
conditions of stress and train in the optimization process, the finite element analysis using the 
cell-based smoothed discrete shear gap technique with triangular elements (CS-DSG3) 
proposed by T. Nguyen-Thoi et al [11,12] is used. The numerical solutions obtained from the 
method are compared with references to show the effectiveness and the accuracy of the 
algorithm. 

2. Theory Fundamental 

An optimization problem can be expressed as follows:  
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where x is the vector of design variables; ( ) 0ih x  and ( ) 0jg x  are inequality and equality 
constraints; l, m are the number of inequality and equality constraints, respectively; ( )f x  is 
the objective function which can be the function of weight, cost, etc.  
 
Design optimization of a structure is to find optimal values of design variables in design space 
such that the objective function is minimum [2]. Dealing with such problems, many 
optimization methods are used including gradient-based and population-based approach to 
find the solution. In this paper, the Differential Evolution is utilized to solve the problem of 
finding optimal fiber orientations and thickness of the stiffened composite plate. 

2.1 Brief on the differential evolution algorithm [10,9] 

The original differential evolution algorithm firstly proposed by Storn and Price [5] has been 
widely used to solve many kinds of optimization problems. The scheme of this algorithm 
consists of four main phases as follows: 
 
Phase 1: Initialization  

Create an initial population by randomly sampling from the search space 
Phase 2: Mutation  

Generate a new mutant vector vi from each current individual xi based on mutation 
operations. 

Phase 3: Crossover  
Create a trial vector ui by replacing some elements of the mutant vector vi via 
crossover operation. 

Phase 4: Selection  
Compare the trial vector ui with the target vector xi. One with lower objective function 
value will survive in the next generation 
 

To improve the effectiveness of the algorithm, the Mutation phase and the Selection phase are 
modified to increase the convergence rate as follow: 
 
In the mutation phase, parent vectors are chosen randomly from the current population. This 
may make the DE be slow at exploitation of the solution. Therefore, the individuals 
participating in mutation should be chosen following a priority based on their fitness. By 
doing this, good information of parents in offspring will be stored for later use, and hence will 
help to increase the convergence speed. To store good information in offspring populations, 
the individuals is chosen based on Roulette wheel selection via acceptant stochastic proposed 
by Lipowski and Lipowska [13]  instead of the random selection. 
 



In the selection phase, the elitist operator introduced by Padhye et al. [14] is used for the 
selection progress instead of basic selection as in the conventional DE.  In the elitist process, 
the children population C consisting of trial vectors is combined with parent population P of 
target vectors to create a combined population Q. Then, best individuals are chosen from the 
combined population Q to construct the population for the next generation.  By doing so, the 
best individuals of the whole population are always saved for the next generation.   
The modified algorithm Roulette-wheel-Elitist Differential Evolution is then expressed as 
below: 
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Generate the initial population 

Evaluate the fitness for each individual in the population 

while <the stop criterion is not met> do 

     Calculate the selection probability for each individual 

     for i =1 to NP do {NP: Size of population} 

          Do mutation phase based on Roulette wheel selection 

          jrand = randi(1,D) {D: number of design variables} 

         for j =1 to D do 

               if rand[0,1] < CR or j == jrand then {CR: crossover control parameter} 

                         ui,j = xr1,j + Fx(xr2,j - xr3,j) {F:randomly chosen within [0,1] interval} 

              else 

                        ui,j = xi,j 

              end if 

         end for 

         Evaluate the trial vector ui 

end for 

Do selection phase based on Elitist selection operator 

end while 

2.2 Brief on the behavior equation of stiffened composite plate [2] 

Stiffened composite plate can be seen as the combination between composite plate elements 
and the stiffening Timoshenko composite beam elements, as illustrated in Figure 1. The 
stiffening composite beam is set parallel with the axes in the surface of plate and the centroid 
of beam has a distance e from the middle plane of the plate. The plate-beam system is 
discretized by a set of node. The degree of freedom (DOF) of each node of the plate 
is [ , , , , ]Tx yu v w  d , in which , ,u v w  are the displacements at the middle of the plate and 

,x y   are the rotations around the y-axis and x-axis. The DOF of each node of the beam is 
[ , , , , ]Tst r s z r su u u  d . The centroid displacements of beam are expressed as 

                         ( ) ( ) ; ( ) ; ( )    r r s zu u r z r v z r w u r   (2) 

where , ,r s zu u u are respectively centroid displacements of beam and ,r s 
 
are the rotations of 

beam around r-axis and s-axis. 

 

Figure 1. A plate composite stiffened by an r-direction stiffener 
 
* Energy equation of stiffened composite plates  
 
The strain energy of composite plate is given by 
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where 0 , ,bε κ γ  are respectively membrane, bending and shear strains of composite plate and 
are expressed as follows 
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m mb b sD ,D ,D ,D  are material matrices of plate  

 

The strain energy of composite stiffener is given by 
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where ,b s

st stε ε  are respectively bending, shear strain of beam and are expressed as follows 
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,b s

st stD D  are material matrices of composite beam  
 

Using the superposition principle, total energy strain of stiffened composite plate is obtained 
by 
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where stN  is the number of stiffeners. 

For static analysis, the global equations for the stiffened composite plate      K F  can 

found in [16] for detail. 

3. Numerical Results 

3.1 Unconstrained problem for fiber angle optimization 

Consider an optimization analysis of a composite plate stiffened by a composite beam 
according to x-direction as in Figure 2 under simply-supported condition. The parameters of 
the problem are given by a = 254 mm, h = 12.7 mm, cx = 6.35 mm and dx = 25.4 mm. The 
analysis is carried out with two cases of square (b = 254 mm) and rectangular (b = 508 mm) 
plate.  

 

Figure 2. Model of a stiffened composite plate 

Both plate and beam have four symmetric layers. The fiber orientation for layers of the plate 
is a set [1 2 2 1], and for the layers of the beam is [3 4 4 3]. The plate and beam are 
made by the same materials with 1 144.8GPaE  , 2 3 9.65GPaE E  , 12 13 4.14GPaG G  , 

23 3.45GPaG  , 12 13 23 0.3     . The plate is subject to a uniform load f = 0.6895 (N/mm2). 
 
The optimization problem is now expressed as: 
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where U is strain energy and I  is fiber orientation of ith layer. 
 
Firstly, static analysis for the case of square plate is carried out to verify the reliability of the 
finite element solution using CS-DSG3 [15]. The results compared with those by Li Li [17] 
and M. Kolli [16] are presented in Table 1 and show good agreement. 
 
Table 1. Comparison of central deflection (mm) of the simply-supported square stiffened 

composite plates subjected to a uniform load f = 0.6895 N/mm2 

Orientation angle for 

both beam and plate 

0 0 0 0[0 / 90 / 90 / 0 ]  
0 0 0 0[45 / 45 / 45 / 45 ]   

Method CS-DSG3 [16] [17] CS-DSG3 [11] 

Central deflection 1.0917 1.0396 1.0892 2.5049 2.4912 

In Table 2, a comparison of different types of DE algorithm for the case of rectangular plate is 

presented. The first two versions are the original different evolution (DE) and the adjusted one 

(ReDE). Both of them are used with continuous variables. We can see that, the difference of 

computational cost between the two versions is rather big. The cost from DE is nearly double 

in comparison with that of ReDE algorithm. The third version is ReDE algorithm with integer 

variables. And the result obtained from this type just equals 43% of that of ReDE with 

continuous variables. However, the values of the solution are still nearly the same. Therefore, 

in this paper, the ReDE with integer variables is utilized for the optimization process for 

saving the cost. 

Table 2. Comparison of different types of DE 

Type of 

stiffened plate 

Method Optimal angle [Degree] Strain energy 

(N.m) 

Computational 

cost (seconds) 
1 2 3 4 

Rectangular 

(a = 254 mm,  

b = 508 mm) 

DE 159.2 37 0 179.9 30300 11223 

ReDE 159.2 37 0 179.9 30300 6787 

Int_ReDE 160 37 0 180 30366 2851 
 
Next, the optimization analysis for two cases of square plate and rectangular plate is carried 
out. The results of fiber orientations obtained from ReDE are presented in Table 3. In this 
analysis, the value of the design variables is chosen to be integer for saving the time of 
computing. The results from the Table 3 show that the solutions by the DE agree very well 
with those by the GA. However, the computational cost for the case of square plate with the 
mesh size of 20x20 is less than 188 seconds. And in the case of rectangular plate with the 
mesh size of 20x40, the cost from GA is nearly double in comparison with the one from DE. 
This shows a big difference and proves the effectiveness of the proposed method.  
 
It is also seen that the optimal fiber orientations of the square plate problem are quite different 
from those of the rectangular plate case under the same conditions. This implies that the 
geometric parameters of the structures also have influence to the results of the optimization 
problems.  
 
 
 



Table 3. The optimal results of two problems 

Type of 

stiffened plate 

Method Optimal angle [Degree] Strain energy 

(N.m) 

Computational 

cost (seconds) 
1 2 3 4 

Square 

(a = b = 254 

mm) 

ReDE 135 48 0 180 6183.2 2065 

GA 135 48 0 180 6183.1 2253 

Rectangular 

(a = 254 mm,  

b = 508 mm) 

ReDE 160 37 0 180 30366 2851 

GA 159 37 0 180 30300 4995 

 

3.2 Constrained problem with thickness optimization 

Consider the same composite plate stiffened by a composite beam according to x-direction as 
in Figure 2 under simply-supported condition. But in this case, the fiber orientations for layers 
of the plate and the beam are given. The problem here is to find the optimal thickness of the 
plate (tp) and the beam (tb) to minimize the weight of the stiffened composite plate under the 
constraints of displacement and stress. The analysis is also carried out with two cases of 
square and rectangular plate. For both cases, the optimal fiber angles found in the above 
unconstrained problems are used, respectively. In particular, the fiber angles of [135 48 0 180] 
is used for the square plate case and the fiber angles of [160 37 0 180] is used for the 
rectangular plate. 
 
For composite materials, many failure criteria proposed to predict lamina failure. In this 
paper, the Tsai-Wu index defined below is used to predict the most likely failure point in a 
layer. 
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The point with the highest Tsai-Wu index is the point that will most likely fail. And this is 
considered as the stress constraint in this problem. 
The optimization problem is then expressed as 

,

w

min Weight(t ,t )

subject to Displacement is les  than 1 mm
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Table 4. The optimal results of two problems 

Type of stiffened 

plate 

Method Optimal thickness Weight  

(kg) 

Computational cost 

(seconds) 
tp tb 

Square 

(a = b = 254 mm) 

ReDE 13 83 1.5269 1065 

GA 13 83  3659 

Rectangular 

(a = 254 mm,  

b = 508 mm) 

ReDE 18 20 4.6593 2606 

GA 18 20  7482 
 
The results from the Table 4 show that the solutions by the ReDE agree very well with those 
by the GA. The objective function is almost the same but the computational costs from GA 



are about 3 times bigger. This shows that the effectiveness of ReDE in comparison with GA is 
much better. 
 
It is also seen that the optimal thicknesses of the square plate are quite different from those of 
the rectangular plate under the same conditions. In the case of square plate, when the 
thickness of the plate decreases about 27% (from 18 to 13), the thickness of the stiffened 
beam increases 4 times (from 20 to 83). This implies that the thickness of the stiffened beam 
has not too much influence to the response of the whole structure as of the thickness of the 
plate. Therefore, in the problem of weight optimization, we can adjust the thickness of the 
plate and focus only on optimizing the thickness of the plate for saving the cost.  

4. Conclusion 

In this paper, the unconstrained and constrained optimization analysis with integer variables 

for the stiffened composite plate using new modified version of DE is presented. In both 

problems, the results obtained are agreed well with those of GA. However, the computational 

cost of ReDE algorithm is much cheaper than the one from GA. The results illustrated the 

efficiency and the accuracy of the adjusted Differential Evolution in solving the optimization 

problem of the stiffened composite plate. 
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