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Abstract

Real-time estimation and differentiation of signals are common tasks in diverse applications
of active vibration control. In this paper, an asymptotic approach for signal differentiation is
applied in an active vehicle suspension system. The synthesis of the differentiation approach
evades the use of a mathematical model of the suspension system. Estimation of unknown
exogenous disturbances due to irregular road surfaces are also estimated. Estimates of time
derivatives of the output variable and disturbances are then used for the implementation of an
active vibration control scheme. Some numerical results are provided to show the effectiveness
of the real-time estimation of the unavailable signals as well as a reasonable vibration attenua-
tion level on a linear quarter-vehicle active suspension system.

Keywords: Active Vibration Control, Vehicle Suspension System, Differential Flatness, Signal
Differentiation, Disturbance Rejection.

Introduction

Real-time estimation of parameters and signals is an active research subject in vibration control.
Several approaches about parameter and signal estimation for mass-spring-damper systems,
vibration absorbers and rotor-bering systems have been proposed in [1, 2, 3, 4, 5, 6]. Time
derivatives of some system variables (e.g., velocity and acceleration) could be also required
for implementation of active vibration control schemes. In fact, error signal differentiation is
demanded in classical Proportional-Integral-Derivative (PID) control which is applied in many
industrial engineering systems. Moreover, availability of signal derivatives can be used to re-
construct disturbance forces affecting a vibration mechanical system. State vector estimation is
commonly based on asymptotic observers designed for specific dynamical systems. In practice,
differentiation of signals is also performed by real-time numerical computations from samplings
of the available output signals. Nevertheless, numerical differentiation could deteriorate the ef-
ficiency and robustness of system identification or control when measurements are corrupted by
noise.

Recently, an asymptotic differentiation approach of signals for angular acceleration estimation
for DC motors has been proposed in [7]. This paper describes the application of this signal dif-
ferentiation approach to approximately estimate time derivatives and disturbances in vibrating
mechanical systems. Signal differentiation is applied to control an active vehicle suspension
system as well. The synthesis of the differentiation approach evades the use of a mathemati-
cal model of the suspension system. Hence, the differentiation approach can be employed in
vibration mechanical systems where time derivative of some signal is required. It is shown



that unknown exogenous disturbances due to irregular road surfaces can be algebraically recon-
structed from estimates of time derivatives. Estimates of time derivatives of the output variable
and disturbances are then used for the implementation of an active vibration control scheme.
Some numerical results are provided to show the effectiveness of the real-time estimation of
the unavailable signals. A reasonable level of forced vibration attenuation on an active linear
quarter-vehicle suspension system is also verified.

1 Mathematical Model of a Vehicle Suspension System

Firstly, consider the mathematical model (1) of the active quarter-vehicle suspension system
schematically shown in Fig.1:

msz̈s + cs(żs − żu) + ks(zs − zu) =u
muz̈u + kt(zu − zr)− cs(żs − żu)− ks(zs − zu) =− u (1)

where the sprung mass ms represents the mass of the car-body part, the unsprung mass mu de-
notes the mass of the assembly of the axle and wheel, cs is the damper coefficient of suspension,
ks and kt are the spring coefficients of the suspension and tire, respectively. The generalized
coordinates are the displacements of both masses zs and zu, zr is the terrain disturbance and u
is the control force input provided by some (electromagnetic or hydraulic) actuator.

Figure 1: Quarter-vehicle suspension system: (a) passive suspension system, (b) active
suspension system with an electromagnetic actuator, (c) active suspension system with a
hydraulic actuator.

Defining the state variables as x1 = zs, x2 = żs, x3 = zu and x4 = żu, mathematical model (1)
adopts the state-space description
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The active suspension system (2) is a differentially flat system, where a flat output y is given by
[8, 9]:

y = msx1 +mux3 (3)

Therefore, state and control variables can be expressed in terms of the flat output y and a finite
number of its time derivatives. Indeed, from y and its time derivatives up to fourth order:

ẏ = msx2 +mux4

ÿ = kt (zr − x3)
y(3) = kt (żr − x4)
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with

Fsk = ks (x1 − x3)
Fsc = cs (x2 − x4) (5)

the differential parameterization results as follows
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and
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Thus from (6) the flat output is governed by the perturbed input-output differential equation

y(4) + a3y
(3) + a2ÿ + a1ẏ + a0y = bu+ ξ (9)

Hence, the following active vibration control scheme based on differential flatness can be di-



rectly synthesised:

u = 1
b
(υ + a3y

(3) + a2ÿ + a1ẏ + a0y − ξ) (10)

with
υ = −α3y

(3) − α2ÿ − α1ẏ − α0y

Nevertheless, implementation of the control law (10) needs measurements or estimates of some
time derivatives of the flat output variable y. In addition, information of the profile of irregular
road surfaces zr could be also demanded.

On the other hand, note that from (4) the flat output y and its derivatives up to third order can be
computed from state variables and disturbance zr. Otherwise, time derivatives of the flat output
can be also estimated directly. Moreover, the disturbance zr can be calculated by

zr = 1
kt

ÿ + x3 = 1
kt

(msẍ1 +muẍ3) + x3 (11)

Thus, in the next section it is described a signal differentiation approach to get approximate
derivatives for some stable dynamical system [7].

2 A Signal Differentiation Approach

The synthesis of the signal differentiation scheme with respect to time is based on the local
approximation of some bounded signal Y by a family of Taylor polynomials of forth degree as

Y (t) ≈
4∑

i=0
qit

i (12)

where coefficients qi are assumed to be unknown.

Therefore, the signal Y can be locally reconstructed by the dynamical system

Ẏf = Y1

Ẏ1 = Y2

Ẏ2 = Y3

Ẏ3 = Y4

Ẏ4 = Y5

Ẏ5 = F (13)

where Y1 = Y , Y2 = Ẏ , · · · , Y5 = Y (4), Yf =
∫ t

0 Y dt, and F is considered as an unknown
bounded perturbation signal including the influence of high frequency noise and small residual
terms of the truncated Taylor polynomial expansion (12) (see [7]). Moreover, we have assumed
that the time derivatives up to fifth order of Y are uniformly absolutely bounded.

Hence, from (13) we propose the following state observer for asymptotic estimation of some



time derivatives of the signal Y :

̂̇
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Y 3 = Ŷ4 + β2

(
Yf − Ŷf
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which only uses information of the filtered output signal Yf . Here, we use the notation (̂·) for
the estimated signals.

Then, the estimation error dynamics is governed by

ėf = e1 − β5ef

ė1 = e2 − β4ef

ė2 = e3 − β3ef

ė3 = e4 − β2ef

ė4 = e5 − β1ef

ė5 = −β0ef (15)

which is completely independent of any coefficients qi of the Taylor polynomial expansion of
the output signal Y . Here, ei = Yi − Ŷi, i = 1, 2, . . . , 5, ef = Y − Ŷf . Notice that, estimator
gains should be properly selected in order to have a stable characteristic polynomial for the
observer-based closed-loop system dynamics. Additionally, the estimation dynamics should be
sufficiently fast to get estimates opportunely to be used by the active vibration control scheme.
Note that, it is widely known that delays in measurements or estimations could become unsta-
ble a dynamical systems. Better estimates can be obtained by employing a Taylor polynomial
model of higher order.

3 Simulation results

Effectiveness of the differentiation approach for approximate estimation of time derivatives and
road disturbance signals required for implementation of the active vibration control scheme
(10) for an active linear quarter-vehicle suspension system was verified by some preliminary
computer simulations. The vehicle suspension system is characterized by the set of parameters
described in Table 1 [10].

In Fig. 2 is shown the unknown exogenous disturbance excitation due to irregular road surfaces
which is described by [11]:

zr (t) =



f1 (t) + f (t) for t ∈ [3.5, 5)
f2 (t) + f (t) for t ∈ [5, 6.5)
f3 (t) + f (t) for t ∈ [8.5, 10)
f3 (t) + f (t) for t ∈ [10, 11.5)
f (t) else

(16)



Table 1: Parameters of the vehicle suspension system.

Parameter Value
Sprung mass ms 216.75 kg

Unsprung mass mu 28.85 kg
Spring stiffness ks 21700 N/m

Damping constant cs 1200 Ns/m
Tire stiffness kt 184000 N/m

with

f1 (t) = −0.0592 (t− 3.5)3 + 0.1332 (t− 3.5)2

f2 (t) = 0.0592 (t− 6.5)3 + 0.1332 (t− 6.5)2

f3 (t) = 0.0592 (t− 8.5)3 − 0.1332 (t− 8.5)2

f3 (t) = −0.0592 (t− 11.5)3 − 0.1332 (t− 11.5)2

f (t) = 0.002 sin (2πt) + 0.002 sin (7.5πt)
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Figure 2: Irregular profile of the road surface.

Fig. 4 describes a reasonable attenuation level of vibrations induced by irregular road surfaces
(16) using the active vibration control scheme based on high-gain signal differentiation. To get
a fast signal estimation the characteristic polynomial of the estimation error dynamics was set
as

PO(s) = (s2 + 2ζoωos+ ω2
o)3 (17)

with ωo = 2000 rad/s and ζo = 5.

Acceptable approximate estimation of the disturbance signal zr is depicted in Fig. 4. On the
other hand, the active control force applied to the vehicle suspension system is illustrated in Fig.
5. The control gains were chosen to have the closed loop characteristic polynomial

Pc(s) = (s2 + 2ζcωcs+ ω2
c )2 (18)
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Figure 3: Position responses of sprung and unsprung masses.

with ωc = 10 rad/s and ζc = 0.7071.
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Figure 4: High-gain fast estimation of the irregular profile of the road surface.



t [s]0 5 10 15 20

u
[N

]

-3000

-2000

-1000

0

1000

2000

3000

Figure 5: Active control force applied to the vehicle suspension system.

4 Conclusions

The application of a signal differentiation approach with respect to time has been described
for an active linear quarter-vehicle suspension system. Certain signal derivatives and unknown
exogenous disturbances due to irregular road surfaces were estimated. Approximate estimates
were then used for the implementation of an active vibration control scheme based on differen-
tial flatness. Numerical results illustrate an acceptable estimation of the disturbance signal due
to irregular road surfaces. It was also shown that the active vibration control scheme archives a
reasonable vibration attenuation level on a linear quarter-vehicle active suspension system when
the estimation error dynamics is sufficiently fast with respect to the closed loop vehicle suspen-
sion system and disturbances. Thus, the effectiveness of the on-line signal estimation algorithm
without employing some specific mathematical model of the controlled dynamical system re-
quires fast velocities for signal processing and high estimation gains. Actually, high speed and
precise sensors, DSP boards, and software with high computational performance operating at
high sampling rates are now available. Hence, the described differentiation approach represents
a good choice to approximately estimate disturbances and time derivatives for scenarios where
evasion of the use of some mathematical model for the system or a minimal number of sensors
are desired.
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