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Abstract 
In this research work, a novel parallel manipulator with 6 degrees of freedom (DoF) and high 
positioning and orienting rate is introduced. Kinematics and Jacobian analysis are investigated. 
Workspace of mechanism considering different rotation capabilities are computed and 
illustrated in Cartesian coordinates. Defining global maximum and minimum singular values 
of homogenized jacobian matrix through the workspace has been utilized in order to synthesis 
positioning and orienting rates capability of mechanism. Thus, improving high rates of 
displacement is achieved by elimination of moving elements and changing kinematic chains 
compared with general stewart-gough mechanism, which makes it suitable in pick and place 
or motion stabilizer devices and high speed machining applications with lower payload. 
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Introduction 

Potential superior properties of parallel manipulators such as low inertia, high stiffness, high 
precision and high load carrying capacity [1]-[2] of parallel manipulators lead to extensive 
attention over the last three decades of them. Performance indices such as manipulability, 
condition number, conditioning and dexterity are useful for comparison studies of different 
robot structures. Manipulability at first was introduced by Yoshikawa [3] as the square root of 
the determinant of the product of the manipulator Jacobian by its transpose. 

 
The Jacobian matrix maps a unit ball in the joint space into a rotated or reflected ellipsoid in 

the Cartesian space. The geometric interpretation of the mapping is proportional to the volume 
of the ellipsoid or the manipulability [3]. Moreover, the volume is equal to the products of the 
singular values of the Jacobian [3]. Salisbury and Craig [4] introduced the ratio between the 
maximum and minimum singular values as the condition number. The inverse of the Euclidean 
condition number is defined as conditioning index which varies from 0 to 1. if the entries of 
the Jacobian have different units for the manipulators with both positioning and orientation 
tasks, which is the case here, one faces a problem of ordering singular values of different units 
from largest to smallest. Ranjbaran and Angeles [5] introduced carachteristic length to resolve 
this issue. Gosselin [6] introduced a method for formulating dimensionally homogeneous 
Jacobian matrix for a planar mechanism with one rotational and two translational degreeof- 
freedom (dof). Kim and Ryu [7] furthered this work by using the velocities of three points on 
the endeffector platform to develop a dimensionally homogeneous Jacobian matrix. Pond and 
Corretero [8] furthered this method again by using three independent coordinates of three 
points on an end-effector platform. Moreover, Angeles [9] introduced engineering 
characteristic length for a rigid body transformation matrix to make it homogeneous. Finally, 
Hosseini et. al. [10]-[11], introduced a weighting factor method to make it homogeneous. 

 
Here a novel mechanism with high positioning and orienting rate is introduced. Its 

kinematic is studied and its Jacobian matrices are derived from these equations. Because of 
complexity of DoF, Jacobian matrix is homogenized by using weighted factor method [10]. 



Moreover, kinematic indices for a trajectory have been investigated and compared with the 
similar size of stewart-gough mechanism, as a case study. Although decreasing the moving 
elements leads to better dynamic performances, this investigation could demonstrate kinematic 
indices improvement due to structural transformation at all. 

 

I. 6-CRS Parallel Manipulator 
As depicted in Fig. 1, 6-CRS parallel manipulator consists of two platforms connecting to 

each other by six identical active C-R-S (Cylindrical-Revolute-Spherical) legs. The active legs 
consist of a fixed length link connected to the mobile platform by a passive spherical joint. On 
the other extremity of the leg there is an actuated prismatic joint followed by a passive revolute 
joint. 

 

 
Figure 1. CAD model of 6-CRS parallel manipulator 

II. Kinematic Analysis 
Geometrical model of the mechanism is illustrated in Fig. 2. Two moving and global frames 

({P (uvw)} and {O (xyz)}) are attached to the moving and base platforms, respectively. 
The kinematic close loop equation can be written as follow for each leg: 
 
                      lai bi i qi lia b q+ = + +x Rn n n n  .                                                     (1) 
 
where x is the vectors from O to P, i.e. the end effector position vector. Moreover, R is 

rotation matrix carrying frame {P} into an orientation coincident with that of frame {O}; nai is 
the ith spherical joint position unit vector in the moving frame. Similarly, nbi, nqi and nli are the 
unit vectors from O to Bi, Bi to Qi and Qi to Ai, respectively; while a and b are the radius of the 
moving and base platform that joints are posed on. Furthermore, the moving part of the limbs 
length is l. 



 
Figure 2. Geometrical Model of 6-CRS 

 
A. Inverse Kinematic 

In the Inverse kinematic problem the pose of the end-effector (EE) is given and the joint 
variables that produce this pose are to be found. Considering the ith leg as depicted in Fig. 3; it 
is obvious that Qi is on the surface of a sphere with the centre Ai and radius of l. Then the 
intersection of this sphere with the slant base concludes the inverse kinematic problem roots. 

The position vector of Ai can be defined by the following equation. 
 
                                      i aia= +a x Rn .                                                         (2) 
 
Considering spherical and universal joints position vector as ai=[xai yai zai]T and bi=[xbi ybi 

0]T the parametric equation of GBi can be written as follow, in which the intersection of all 
slant bases is illustrated by G. 

 
; ;bi i bi bi i bi ix x t x y y t y z ht= − + = − + =                                       (3) 

 
where h is the height of G point. 
 

Substituting the above equations in the parametric equation of sphere as the following: 
 

2 2 2 2( ) ( ) ( ) 0ai ai aix x y y z z l− + − + − − =                                     (4) 
 

Leads to the following equation 
 
                          2 2 0i i i i im t n t p− + =                                                   (5) 
 
In which coefficients are given as: 
 
                      2 2 2( )i bi bim x y h= + +                                                    (6) 
 

            2 2( )i bi bi bi ai bi ai ain x y x x y y hz= + − − +                                         (7) 
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Solving Eq. (5) for ti and substituting the values of Eq. (3) led to the inverse kinematic 

problem solution. This approach could help to avoiding impossible roots such as Ri2 in Fig 3. 
Thus, only the roots are acceptable in which associated ti lie in desired interval satisfied by the 
linear actuator stroke. 

 

 
Figure 3. Schematic configuration of 6-CRS kinematic 

 
The following cases may occur: 
Case 1) The slant guide way does not intersect the associated sphere. Thus there is no 

solution for IKP (Inverse Kinematic Problem), i.e., the assumed position would be out of reach 
by the EE(End Efector). 

 
Case 2) The slant guide way intersects with the associated sphere at one point. Therefore, 

IKP leads to only one solution for the corresponding leg. 
 
Case 3) The slant guide way intersects with the associated sphere at two points. Therefore, 

IKP leads to two solutions for the corresponding leg, as depicted in Fig 3, by Ri1 and Ri2. 
 
Therefore, the IKP might leads to 26 solutions (with considering dual roots) or no solution 

at all. 
 

III. Jacobian Matrix and Velocity Analysis 
The first time derivative of Eq. (1) leads to: 
 

lp ai i qi l lia q+ × = + ×x ω Rn n ω n                                          (9) 
 

In which ωl and ωp are the angular velocities of the fixed length link and the moving 
platform, respectively. Inner product of the both sides of Eq.9 by nli, upon simplifications leads 
to: 

 
T T T

li p ai li qi lia q+ × =xn ω Rn n n n                                          (10) 
 



Equation (10) can be rewritten as bellow 
 
                    ( )T T

li li ai p li qia q+ × =n x n Rn ω n n                                          (11) 
 
Writing the foregoing equation for the three legs yields to: 
 
                      =Ax Bq                                                                   (12) 
 
In which x  and q are EE twist array and joint space velocity vector, respectively. Moreover, 

A and B are two Jacobian matrices which are given as: 
 
                            [ ]

6 6li li aia
×

= ×A n n Rn                                                       (13) 
 

                     
1 1

6 6

0 0

0 0

T

l q

T

l q

=

 
 
 
  

n n

B

n n

 6                                                      (14) 

 
The Jacobian matrix can be determined by Eq. 15. 
 
                                         1−=J B A                                                                (15) 

IV. Singularity Analysis 
Generally, singularity occurs whenever the manipulator loses some DoF or gains some 

uncontrollable DoF. In parallel manipulators singularities occur whenever A, B or both 
become singular. Thus, for the manipulator at hand a distinction can be made among three 
types of singularities, which have different kinematic interpretations. 

For the 6-CRS parallel manipulator, singularity occurs in four cases, namely; 
 
Case 1) First type of singularity or Inverse Singularity; in this case B is invertible and A is 

singular, i.e. when 
 
                           det( B) = 0&det( A)≠0                                                        (16) 
 
The physical condition happens when one of the fixed length link is perpendicular to the 

direction of the associated linear guide way. 
 
Case 2) Second type of singularity or Direct Singularity; arises when B is singular and A is 

invertible, i.e. when 
 
                           det( B) ≠ 0&det( A) = 0                                                      (17) 
 
This case occurs when the z coordinates of the fixed-length links vector is equal to zero. In 

this condition all three legs lie in the plane of the moving platform which is parallel to the base 
one, as well. Hence, by increasing or decreasing the actuator length, there are two options for 
Ai to locate, as depicted in Fig. 4, by 1 and 2. 

 



Case 3) Third type of singularity; this type of singularity arises even if both B and A are 
simultaneously singular. Under a singularity of this type the manipulator can undergo finite 
motions even if the actuators are locked. As well, a finite motion of actuators produces no 
motion for EE in some directions. 

 
Case 4) Constraint singularity; this case will occur when the moving platform rotates 90 

degrees around x or y axis. In this case the platform will lose one rotational dof. Zalatanov et. 
al. [12] illustrated some constraint singularities, as well. 

 

 
Figure 4. Schematic for direct singularity 

 

V. Workspace and Optimization 
Applying the inverse kinematic equations and a search algorithm in different height leads to 

the bound of reachable workspace [13]. This operation will be continuing as the geometric 
constraints are satisfied, subject to Table 1. 
 

Table 1. Geometrical constraint for mechanism 
 

Actuator 
(mm) 

l (mm) λ 
(deg) 

b (mm) a (mm) 

0-600 100-
300 

10-80 300-
500 

100-300 

 
As a case study, the Cartesian workspace of the structure according to Table 2, with the 

foregoing constraints is depicted in Fig. 5 in which the workspaces are depicted considering 
different rotation capabilities around three axes. Moreover, sub workspaces include bounded 
local conditioning indices into a minimum allowable of 0.0003 are depicted in Fig. 6 which 
singularity avoidance is performed. 
 

Table 2. The case study design parameters 
 

l 
(mm) 

λ 
(deg) 

b 
(mm) 

a 
(mm) 

300 30 300 100 
 



Considering 100 (mm) weight factor for homogenized jacobian matrix, for the workspace 
with 20 degree rotation capability, the performance indices such as global conditioning index 
(GCI), average minimum and maximum singular values are depicted in Table 3. 
 

Table 3. The case study performance indices 
 

V(mm3) GCI maxσ  minσ  
6.51e+6 0.9895 1.5016e+4 2.5899 

 
Global conditioning index (GCI) [6], are defined as following equations. 

 

 
a. 0 deg Rotation Capability Cartesian Workspace 

 

 
b. 5 deg Rotation Capability Cartesian Workspace 



 
b. 10 deg Rotation Capability Cartesian Workspace 

 
Figure 5. The case study workspaces with different rotation capabilities 

 
                 
 

 
d. Subworkspace with 0 deg Rotatioon Capability with 

minimum 0.0003 LCI 

 
e. Subworkspace with 5 deg Rotatioon Capability with 

minimum 0.0003 LCI 



 
f. Subworkspace with 10 deg Rotatioon Capability with 

minimum 0.0003 LCI 
           

Figure 6. Sub workspaces with different rotation capabilities 
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                                                              (18) 

 
In which local conditioning index (κ) for the workspace element is determined by the 

respective of minimum and maximum singular values of homogenized jacobian matrix using 
weighted factor method. 
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=                                                                 (19) 

 
Respectively, the average maximum singular value and average minimum singular value 

indices as the performances indices for positioning and orienting rates are defined as follow. 
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max
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                                                           (20) 

 
And 
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min

dv

dv

σ
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∫
                                                               (21) 

 
Lower value of maxσ led to higher end-effector positioning and orienting resolution and 

higher value of minσ  led to higher positioning and orienting rates [6]. 
 



Conclusions 

In this research work a novel parallel manipulator with 6-CRS kinematic chains is 
introduced. The mechanism has 6 degrees of freedom. Inverse kinematic equations with a 
geometrical approach have been solved and used to workspace evaluation. Proposed 
parametric solution method leads to avoidance of actuators to locate into other inverse 
kinematic solutions sets. Jacobian matrix is derived by taking the first time derivation respect 
to time. Jacobian entries inhomogeneity has resolved by weighted factor approach equal with 
moving platform radius. Considering minimum desired rotation angles workspaces estimated 
in Cartesian workspaces. Bounding minimum local conditioning indices to the minimum 
allowable value led to sub workspaces with different rotation capabilities. Finally for the case 
study structure, some global indices are calculated in order to have performance indices for 
comparison between other same-dof parallel manipulator.  
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