
A new SPH iterative method for solving nonlinear

equations

Rahmatjan Imin∗, Ahmatjan Iminjan
College of Mathematics and Systems Science, Xinjiang University Urumqi 830046, China

*Corresponding author: rahmatjanim@xju.edu.cn

Abstract: In this paper, based on the basic principle of the SPH method’s kernel approximation, a new
kernel approximation was constructed to compute first order derivative through Taylor series expansion.
Derivative in Newton’s method was replaced to propose a new SPH iterative method for solving nonlinear
equations. The advantage of this method is that it does not require any evaluation of derivatives, which
overcame the shortcoming of Newton’s method. Quadratically convergent of new method was proved
and a variety of numerical examples were given to illustrate that the method has the same computational
efficiency as the Newton’s method.
Key words: SPH method; Nonlinear equations; Newton’s method; Quadratically convergent; Iterative
method.

1. Introduction

A variety of complex problems in different fields of science and engineering require finding the
solution of a nonlinear equation (or the system of nonlinear equations) of the form F (x) = 0, in order
to solve this equation researchers proposed many iterative methods [1–6]. Most of those methods
were based on the well-known Newton’s method, which is easy to implement and has quadratically
convergence under fairly assumptions, however, it requires to compute F ′(x) with F ′(x) 6=0 in each
calculation step, and some times it is difficult to provide the derivatives of function when the function
is a complicated function. To overcome this problem, some derivative free iterative methods have been
proposed [7–9].

In this paper, concerning derivative calculation in Newton’s method, based on the basic principles
of the smoothed particle hydrodynamics(SPH) [10, 11] method’s kernel approximation, a new kernel
approximation method was proposed to compute first order derivatives through Taylor series expan-
sion. By replacing the derivatives in Newton’s method, a new SPH iterative method was developed and
the convergent of new method was proved. Several examples were calculated using the new method
and the results were compared with Newton’s method. Results showed that the new method almost
has same accuracy and convergence with Newton’s method.

2. Conventional SPH method

The first step of SPH method is the kernel approximation. The conventional kernel approximation
for a functionf(x) and its derivatives at a particular point, whose position vector is x, in a volume Ω
is defined as 〈

f(x)
〉

=

∫
Ω
f(x′)W (x− x′, h)dx′ (1)



〈
∇f(x)

〉
=

∫
Ω
f(x′)∇W (x− x′, h)dx′ (2)

Where W (x− x′, h) is kernel function and depends on two variable: distance of two points|x− x′|
and smoothing length h, which determines support domain of W (x−x′, h) , the kernel function should
satisfy some properties [12]. The most frequently used kernel function in SPH method is the cubic
B-spline kernel. It has the form as shown in Eq.(3), Fig.1 shows that different smoothed length ( h = 1
and h = 0.5 in one dimensional case ) affects influence radius and shape of cubic B-spline kernel.

W (x− x′, h) = αd
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1

h
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in one, two and three dimensional cases respectively, R is the relative

distance between two points (particles) at points x and x′, where R =
r

h
=
|x− x′|
h

in which r is the

distance between the two points.

Fig. 1: Figure of cubic B-spline kernel functionin 1D case

The second step of SPH method is the particle approximation, in which the problem domain is
discretized into a finite number of randomly distributed particles which have mass and volume (see
Fig. 2 For illustration in a two-dimensional case). Suppose infinitesimal volume dV ′ in the above
integration at the location of j was replaced by the finite volume of the particle ∆V j . If the particle
mass and density are concerned, the ∆V j can also be replaced by the corresponding mass to density
ratio mj/ρj ; the kernel approximation of a function and its derivatives expressed in Eq.(1) and Eq.(2)
can be written in the following form of discretized particle approximation.

〈
f(xi)

〉
=

M∑
j=1

∆V jf jW ij =

M∑
j=1

mj

ρj
f jW ij (4)

〈
∇f(xi)

〉
=

M∑
j=1

∆V jf j∇W ij =

M∑
j=1

mj

ρj
f j∇W ij (5)

where f j = f(xj) , M is the number of particle in the support domain of particle i, W ij = W (xi −
xj , h) = W (rij , h), ∇W ij = ∇W (x− x′, h)

∣∣
x=xi,x′=xj

, rij = |xi − xj |
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Fig. 2: SPH particle approximations

3. New kernel approximation method to compute first order deriva-
tives

Let f be a function of variable x , f ′′ continuous and f ′′′ exist in neighborhood of x = xi, Taylor
series expansion of f about the point x = xi, retaining only three terms, written as

f(x) = f(xi) +
∂f(xi)

∂xα
(xα − xiα) +

1

2

∂2f(xi)

∂xα∂xβ
(x− xiα)(x− xiβ) +O[(x− xi)3] (6)

where repeated indices α and β are summed over their ranges, but the repeated index i enclosed in
parentheses is not summed.

By multiplying both sides of Eq.(6) with (xγ − xiγ)W (x − xi, h) and integration of the resulting
equation over the support domain Ω of kernel function W (x− xi, h) yields.∫

Ω
f(x)(xγ − xiγ)W (x− xi, h)dx = f(xi)

∫
Ω

(xγ − xiγ)W (x− xi, h)dx

+
∂f(xi)

∂xα

∫
Ω

(xα − xiα)(xγ − xiγ)W (x− xi, h)dx

+
1

2

∂2f(xi)

∂xα∂xβ

∫
Ω

(x− xiα)(x− xiβ)(xγ − xiγ)W (x− xi, h)dx+O(h4) (7)

Due to the symmetry of support domain Ω and the kernel function W (x− xi, h) is an even function ,
hence third integral on right hand side of Eq.(7) is equal to zero, therefore the Eq.(7) simplified to∫

Ω

[
f(x)− f(xi)

]
(xγ − xiγ)W (x− xi, h)dx =

∂f(xi)

∂xα

∫
Ω

(xα − xiα)(xγ − xiγ)W (x− xi, h)dx (8)

By applying the particle approximation principle of SPH, from equation (8) leads to the following
particle approximation of the derivative at a particle point i

〈∂f(xi)

∂xα

〉
=
( M∑
j=1

mj

ρj
xjiαx

ji
γW

ji
)−1( M∑

j=1

mj

ρj
xjiγ f

jiW ji
)

(9)

where xjiα = xjα − xiα, xjiγ = xjγ − xiγ , f ji = f(xj)− f(xi), W ji = W (xj − xi, h).



From the above Eq.(9) it can be seen that the calculation process of derivatives is not need to
calculate the derivative of the kernel function. The kernel function could be used directly, reducing
differentiability requirement of kernel function, at the same time a larger class of kernel functions
could be used and the calculation is made easier.

3. The algorithm of new SPH iterative method

The famous Newton’s methods is

xn+1 = xn −
[
F ′(xn)

]−1
F (xn) (10)

Applying new kernel approximation method introduced above into Eq.(10), get corresponding new
SPH iterative method.

For numerical implementation of the presented method, provide the following algorithm.
Step 1:initial values of x0, tolerance ε , maximum number of iterations N , n = 0 and set the smooth
length of kernel function h.
Step 2: while (n≤N) do step(3-7)

Step 3: use Eq.(9) to compute F ′(xn)

Step 4: compute y = −
[
F ′(xn)

]−1
F (xn)

Step 5: xn+1 = xn + y

Step 6: if ‖ F (xn) ‖≤ ε or ‖ xn+1 − xn ‖≤ ε output approximate solution x∗ and stop

Step 7: set n = n+ 1 and xn = xn+1

Step 8: output ”the method failed after N iterations”; Stop

4. The convergent proof of new SPH iterative method

For the sake of simplicity only given and proved one variable case.
Theorem: Let f ′′(x) continuous and f ′′′(x) exist in neighborhood of x = x∗; and let f(x∗) = 0. The
iterative method defined by equation (10) is quadratically convergent for smoothed length h = K∆x
and some ∆x is sufficiently small.
Proof:. In equation(9), if we use cubic B-spline kernel and set smoothed length h = 1.1∆x in iterative
process, the Eq.(10) will become following iterative formula accordingly

xn+1 = xn −
878∆xf(xn)

4[f(xn + 2∆x)− f(xn − 2∆x] + 431[f(xn + ∆x)− f(xn −∆x)]
Let en = xn − x∗, by using Taylor series expansion,we have

f(xn) = enf
′ +

1

2
e2
nf
′′ + o(e2

n)

f(xn + ∆x) = (en + ∆x)f ′ +
1

2
(en + ∆x)2f ′′ + o((en + ∆x)2)

f(xn + 2∆x) = (en + 2∆x)f ′ +
1

2
(en + 2∆x)2f ′′ + o((en + 2∆x)2)

here f ′ = f ′(x∗), f ′′ = f ′′(x∗). Therefore,there holds



f(xn + ∆x)− f(xn −∆x) = 2∆x
[
f ′ + en∆xf ′′ + o(en)

]
so we have

en+1 = en −
enf

′ + 1/2e2
nf
′′ + o(e2

n)

f ′ + en∆xf ′′ + o(en)

= e2
n

1/2f ′′ + o(1)

f ′ + en∆xf ′′ + o(en)
namely,

lim
n→∞

en+1

e2
n

=
f ′′

2f ′

which shows that the iterative method is at least a quadratically convergent.

5. Numerical examples

In this section presented some examples to illustrate the efficiency of the new SPH iterative method
comparing with Newton’s method (NM)(see Table1-3). In each example, the following stopping criteria
was used.

‖ F (xn) ‖≤ 10−15 (11)

Computational order of convergence (COC)→ ρ defined as:

ρ ≈
‖ xn+1 − xn ‖

/
‖ xn − xn−1 ‖

‖ xn − xn−1 ‖
/
‖ xn−1 − xn−2 ‖

(12)

Example 1:Application to one variable nonlinear equation

(1.1)x2 − ex − 3x+ 2 = 0 (1.2)arctanx+ sinx+ x− 2 = 0

(1.3)sin2x− x2 + 1 = 0 (1.4)x2 − (1− x)5 = 0
Example 2:Application to binary nonlinear equation

(2.1)

{ x

tanx
= −y

x2 + y2 = 3.52
(2.2)

{
ex

2
+ 8xsiny = 0

x+ y = 1
(2.3)

{
x2 − 2x− y = −0.5

x2 + 4y2 = 4

Example 3:Application to ternary nonlinear equation

(3.1)


x2 + y2 + z2 = 1

2x2 + y2 − 4z = 0

3x2 − 4y2 + z2 = 0

(3.2)


x2 + y2 + z2 = 9

xyz = 1

x+ y − z2 = 0

6. Conclusion

In this paper the SPH method used to finding roots of nonlinear equations and a new SPH itera-
tive method for finding roots of nonlinear equations F (x) = 0 were proposed which has the following
advantages:
(1)This method is available for finding roots multiple dimensions equations.
(2) The method only needs initial approximation of x0 and it is not only need not to calculate any
evaluation of derivatives of F (x) and also need not to calculate of derivatives of kernel function
W (x− x′, h).
(3)The method is quadratically convergent and keep the same convergent and computational efficiency



Table 1: Comparison of the presented method and Newton’s methods to one variable
nonlinear equation

Number of Iterations COC—ρ
Examples Root Initial Value

NM SPH NM SPH

2 5 5 2.0006 2.0006
1.1 0.257530285439861

-1 5 5 2.0007 2.0007

3 10 10 2.0007 2.0007
1.2 0.718586769063582

0.1 5 5 1.9997 1.9997

2 5 5 2.0005 2.0005
1.3 1.404491648215340

1 6 6 1.9999 1.9999

2 7 7 2.0012 2.0012
1.4 0.345954815848242

-2 11 11 2.0004 2.0004

Table 2: Comparison of the presented method and Newton’s methods to binary nonlinear
equation

Number of Iterations COC—ρ
Examples Root Initial Value

NM SPH NM SPH

(2.389946943809752, (3, 3) 8 8 1.9957 1.9957
2.1

2.556981346387655) (2, 2) 6 6 2.0003 2.0003

(-0.140285010811190, (0.2, 0.8) 5 5 1.9997 1.9994
2.2

1.140285010811190) (-0.2, 2) 5 5 1.9621 1.9621

(-0.222214555059722, (0.5, 0.5) 7 7 2.0015 2.0016
2.3

0.993808418599834) (0.5, 1.5) 5 5 1.9996 1.9996

Table 3: Comparison of the presented method and Newton’s methods to ternary nonlinear
equation

Number of Iterations COC—ρ
Examples Root Initial Value

NM SPH NM SPH

(0.560573416264006, (0.5, 0.5, 0.5) 5 5 2.0000 2.0000
3.1 0.497671169854288,

0.219040425836983) (1, 1, 1) 6 6 2.0065 2.0065

(2.491375696830689, (2.5, 0.5, 1.5) 5 5 1.9850 1.9850
3.2 0.242745878757136,

1.653517939300274) (2, 0.1, 2) 5 5 1.9183 1.9181



with the Newton method.
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