
Boundary and current elements for simulation of electromagnetic fields of 

complicated spatial configuration 

 
*†A.A. Trubitsyn, E. Yu. Grachev and V.S. Gurov 

Department of Electronics, Ryazan State Radio Engineering University, Russia 

*Presenting and †corresponding author: assur@bk.ru 

 
Abstract 

Processes of interaction of charged particle fluxes with substance are a base of operation of a 

wide range of devices for scientific researches and vacuum technological installations for 

various purposes. Besides, an important independent scientific and technical task is a task to 

control parameters of such fluxes by influencing of electrical and/or magnetic fields of a 

specified configuration on them. 

The paper shows a mathematical instrument and algorithms for simulation of the electrical 

field in electron-optical systems with complicated configuration of electrodes by the boundary 

element method (BEM). The boundary element method solves an exterior Dirichlet's problem 

under digitization of a multiplied connected boundary of the area by straight boundary 

elements. Integral equation being a basic for the method is found from the second Green’s 

formula. 

Biot-Savart-Laplace law is used for numerical simulation of the magnetic field for a set of 

arbitrarily oriented round solenoids. Besides, each turn of the solenoid is divided into current 

elements having a physically short extent. Calculation of the magnetic field of a two-

dimensional shape (turn) in space is reduced to calculation of coordinates of elementary 

current middles and their projections on the axes 0x and 0y. Magnetic field of a solenoid is 

calculated as a superposition of fields of all its turns. Magnetic field of the arbitrarily oriented 

solenoid can be found by means of direct and reverse rotations of the Cartesian coordinate 

system for angles being equal to angles setting an orientation of solenoids in space. Magnetic 

field of a set of arbitrarily oriented solenoids is calculated according to the superposition 

principle. 

Developed methods have been integrated into the computer application and used under design 

of the microfocus x-ray tube of high power. Acceleration and focusing of the electron beam in 

the tube is executed by the electrostatic field and its positioning to the required area on the 

anode – by the magnetic field of two external solenoids. 

Keywords: boundary elements, boundary elements method, electron optics system, Biot-

Savart-Laplace law, current element, solenoid, numerical modelling, microfocus x-ray tube 

 

Introduction 

Tasks of focusing and transportation of charged particle fluxes are main problems under 

creation of highly qualitative devices for electron and ion optics. Electric and magnetic fields 

and their combinations are used for solution of such tasks. Mathematical simulation is one of 

important stages for development of technical means forming electromagnetic fields with 

required properties. Numerical methods are the most general techniques for simulation of 

electromagnetic fields as distinct from analytical ones. 
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Electrostatic field simulation 

The problem of numerical analysis of electric fields in systems with a complex configuration 

of electrodes is brought to the forefront in electron optics which is the basis for analytical 

instrument making [1] [2]. At present Boundary Elements Method is one of the most 

advanced numerical techniques to solve problems of the potential theory [3]. The solution of 

the exterior Dirichlet problem in electron optics, in contrast to the interior one, allows us to 

predict the parameters of the schemes as close to the real device.  

In this case boundary Г of the researched area G is represented by a combination of closed 

contours (electrodes of real thickness and configuration) at each of which potential is fixed 

and integral equation connecting potential u()  in the researched area and its boundary with a 

normal potential derivative q at the boundary is recorded. The obtained integral relations are 

based on the second Green's identity [4] that allows simulating fields in areas which 

boundaries have corners and fractures. 

A wide class of electron-optical systems (EOS) can be described within the framework of axi-

symmetrical models at the design stage with a high degree of confidence. 

For numerical solution of the problem the integral equation has a discrete form. For this 

purpose boundary Г is divided into N boundary elements Гj. Taking into consideration 

potential constancy at each contour (electrode) and under assumption of the normal potential 

derivative constancy at each boundary element, the equation is recorded in the form 
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where G  ; = under Г and =2 under G for two-dimensional  tasks, =2 

under Г and =4 under G for three-dimensional  tasks, and functions ( )jF   and ( )jH   

are integrals from the fundamental solution and from a normal derivative of the fundamental 

solution of the Laplace equation correspondingly [5] and in a regular case they can be 

calculated according to the standard Gaussian quadrature. 

Calculation of the electrostatic field is executed by two stages. Firstly, by means of equation 

(1) an unknown vector qj is calculated according to a known boundary distribution of the 

potential u (Г), i.e. “inverse” problem is solved. Then found values qj and specified uj for 

determination of the function u(),  from equation (1) are used, i.e. “direct” problem is 

solved. 

Copyright technique [6] is briefly described below for elimination and weakening of 

peculiarities in sub-integral functions (integrands) under solution of inverse and direct 

problems providing high accuracy of the task solution in general. 

 

Inverse problem 

Collocation method is used for solution of the inverse problem according to which points i 

are determined in the middle of each straight (then ( ) 2    )  element Гi and for the whole 

N- aggregate of points I  a system of N equations is recorded 

2u(i)+
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j ij j ij
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u H q F
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  , i=1, 2, ... ,N,                                   (2) 

where Hij=Hj(i),Fij=Fj(i). 



Integrals with singular integrands exist under i=j, i.e. in the case when integration is executed 

by element Гj (let’s call it as singular) containing a current collocation point i. 

Calculation of Hii. In consequence of potential jump of a double layer under crossing of the 

area boundary inside-out [7] we will have the following value of integral Hii for the exterior 

task: 

Hii= 4 . 

Calculation of Fii. In this case for elimination of peculiarities, polynomial representation of 

the complete elliptical integral of I-type is used 

K(m)=B(m1)-A(m1) lnm1, where m1=1-m, B(m1)= 1
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pn, sn - tabulated coefficients of the polynomial representation [8] which ensures enough high 

speed of convergence to an exact value and allows obtaining the following estimation of 

integral Fii 
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j  - a length of straight boundary element Гj, ci=sin()i, ai=cos()i, bi and di are z- and 

r-coordinates of the element Гi beginning in the cylindrical coordinate system Z0R,  - an 

angle of its slope to the axis z. 

The first integral in formula (3) can be calculated by means of the usual Gaussian quadrature 

and there are special quadratures [8] allowing making calculations with required accuracy for 

numerical integration of functions of type f(x)ln(1/x). Multiplicative approach has 

methodologically been realized here for separation of peculiarities. 

So, solution qj of the inverse problem according to (2) can be obtained from a system of linear 

equations 

bi=Fijqj, 

where bi=
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* 2 6ii iiH H    ; Fij is calculated 

according to formula (3) for i=j. 



 

Direct problem 

Obvious formula is used for solution of the direct problem (ref. equation (1)) 
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1 1

1
( ) ( )

4

N N

j j j j

j j

u H q F
 

 
   

  
  , . 

It is clear that the closer point   is to the boundary element Гj,, the stronger extremum 

expression is in behavior of integrands ( discontinuity occurs at the limit) that complicates 

direct application of the standard Gaussian quadrature. 

Formulas improving accuracy of estimation of (quasi-) singular integrals Hj() and Fj() are 

mentioned below. 

For accurate estimation of integral Hj()  the following formula is used 

Hj()=Hj
*
()-P()/(rj)

k
, 

where an unknown parameter  P() is determined by expression 
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Here Hj
*
() are integrals calculated according to the standard Gaussian quadrature, rj is a 

distance between    and a point being the closest to it in the segment Гj, k is an index of the 

degree which empirically found optimal value is equal to 4. 

Formula for calculation of Fj(): 
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Here g(x)=A(m1)R(x)/
* *a b , T=j, D=[R()-dj]cj+[Z()-bj]aj, P=[R()-dj]

2
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2
.  

Additive approach for separation of peculiarities has methodologically been realized here. 

 

Calculation error estimate 

Testing of suggested methods for solution of the exterior Dirichlet's problem on model axially 

symmetrical tasks has allowed making the following conclusions: 

- guaranteed accuracy of the potential calculation is ~ 10
-4

-10
-3

 %; 

- for electron-optical systems (EOS) with straight sections of electrodes, calculation errors in 

the range are limited only by round-off errors. 

- for EOS with curvilinear electrodes, calculation errors are determined by an accuracy of 

approximation of the boundary by linear segments and do not exceed ~ 10
-3

 % under 

calculation in real time. 

Figure 1, as an example, shows a result of simulation of the electrostatic field in the 

microfocus x-ray tube containing a cathode assembly which elements are under potential -80 



kV, focusing electrode with potential -78 kV and grounded thick anode with a narrow channel 

of the special form intended for increasing of power of x-ray radiation. Distribution of the 

potential is encoded by shades of grey color. 

 

 

Figure 1. Distribution of an electrical potential in  the x-ray tube 

meridional section 

 

 

Magnetic field simulation 

Known method for the magnetic field excitation in space is based on transmission of the 

electrical current through conductors.  Biot-Savart-Laplace law [9] is one of main laws of 

electromagnetism and sets a value of the magnetic field induction    ⃗  created in space by a 

current element      according to formula  

  ⃗  
       

  (              )
, 

where I is a value of current in the element    (        ) of the contour (l),    is a distance 

between element     and point of observation P(x,y,z) (Fig. 2). Here I=ISI10
-7

, where ISI – 

current measured in amperes. The superposition principle allows calculating a magnetic field 

at any point of space P(x,y,z)  by integrating according to contour (l): 

 ⃗  ∫   ⃗ 
( )

 ∫
       

  (              )( )
.                                           (4) 

One of main sources of the magnetic field in the 

absence of ferromagnetic is a solenoid as a 

combination of simple circular currents. However, 

direct application of the Biot-Savart-Laplace law 

even for calculation of the field of a circular turn 

(at any point of space) is complicated by problems 

with analytical integration in formula (4). 

Then a simple method of numerical solution of the 

task to calculate a field of the circular turn is 

mentioned and obtained results are generalized for 

technique of determination of an arbitrary 

solenoid field. 

 

Figure 2. Calculation of the magnetic 

field at point P 



Field of circular current  

Idea of the suggested method is the following. Flat conductor located in the plane x0y is 

divided into N similar segments of length l (Fig. 3). Distance r is considered as constant 

under integration by one element li and equal to a distance between a midpoint of the 

segment with coordinates (xi,yi,zi) and a point Р.  

 In such approximation integral (4) is recorded in the 

following way: 
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Then we take into account that         (       ) and 

       (           ), and also a vector product is 

recorded though determinant 
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Taking this record into consideration integral over the segment li is easily expressed by 
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Since in the coordinate form a vector of the magnetic induction is recorded in the following 

way  ⃗               ⃗ , then on the basis of formulas (5) and (6) we obtain an expression 

for components of the vector  ⃗  along coordinate axes 
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where distance ri has an obvious expression  

   √(    )  (    )    . 

So, calculation of the magnetic field created by the 

flat contour with current is reduced to calculation 

of coordinates xi, yi of element middles li, i=1… 

N, and projections Δxi, Δyi of these elements along 

axes 0x and 0y. 

For a circular turn with current located 

perpendicularly to the axis 0z with a center at the 

beginning of coordinates, enough simple 

algorithm for calculation of these parameters 

consists in division of the circumference (Fig. 4) 

into the same arcs with a small angular size  

and determination of an angular coordinate of the 

element center 

   (   )   
  

 
, i=1, 2, …, N, 

 

Figure 3. Numerical 

determination of the flat 

current magnetic field 

 

Figure 4. Division of the circular 

contour into current elements 



determination of coordinates of its center  

         ,                                                          (8) 

and values of projections of the element along axes 0x and 0y 

           ,                                                      (9) 

where         [(   )  ],         (   ),         [(   )  ],         (   ). 

 

Solenoid field  

Suggested technique for calculation of the turn field easily spreads to a problem of calculation 

of the solenoid magnetic field containing К layers and J turns in each layer (Fig. 5). 

Solenoid field which upper base is located in the plane 

x0y and axis coincides with coordinate axis 0z can be 

calculated as a double sum by a number of layers and 

turns in each layer 

 ⃗  (     )  ∑ ∑  ⃗   (      ( ))
 
   

 
   ,       (10) 

where components of the magnetic field  ⃗     of each 

turn along axes are determined according to formula (7) 

taking into account a value of the turn radius of к-layer 

Rk=R+(k-1)Rc for usage in formulas (8, 9), k=1…K, 

and zj=z+(j-1)zc, j=1…J. Here Rс is a difference of 

radiuses of turns and zс is a distance between adjacent 

turns along axis 0z.  

 

Calculation error estimate 

Analytical expression for the field of the circular current on the symmetry axis 

   
 

 

  

(     )   
, 

where z – a distance from the turn center to a calculated point, allows testing the suggested 

technique for numerical determination of the magnetic induction. 

Fig. 6 shows a dependence of a value of the relative error of induction calculation B=Bz (7) in 

the turn center (z=0) from a number N of elements of division of the rolling circumference. 

Fig. 7 shows a dependence of the absolute error of the magnetic field induction calculation 

   |     | on the turn axis with current I=1 arb. u. and radius R=1 arb. u.  for N=180, 

so, we can make a conclusion on enough fast attenuation of the error with distance from the 

turn plane. 

Errors of the magnetic field calculations in solenoids have been estimated by the same way. 

For a solenoid with internal radius R=1 and length Н=10 containing 5 layers of turns and 

1000 turns in each layer under division of the turn circumference into N=360 elements, 

relative error of the field calculation was 0.1 % in the solenoid center. 

Analysis of above mentioned data allows making a conclusion that the suggested method 

ensures high accuracy of calculations of the magnetic field being enough for correct solution 

of tasks of contemporary electron optics. 

 

Figure 5. Solenoid  cross-section 



  

Figure 6. Relative error of the magnetic field 

calculation at the circular current center 

Figure 7. Absolute error of the 

magnetic field calculation on the 

circular current axis 

 

Field of the arbitrarily oriented solenoid 

Location of the solenoid in space can be definitely set by coordinates xS, yS and zS of the upper 

base center and angles  and   fixing direction of its axis. Direction of the axial field vector 

 ⃗  determined according to the right-hand screw rule (Fig. 8) in relation to the current 

direction is accepted as a positive direction of the solenoid axis   . Angles  and   are angles 

of solenoid axis rotation around axes 0х′ and 0y′ in the coordinate system 0x′y′z′ connected 

with the upper base center which all axes are codirected with axes of the laboratory coordinate 

system 0xyz. 

Under specified center coordinates xS, 

yS, zS in the coordinate system 0xyz 

and angles of orientation  and  of 

the solenoid, at the first stage the 

algorithm for calculation of the 

magnetic field induction  ⃗   at the 

point (x,y,z) consists in a sequential 

usage of standard formulas for 

transformation of coordinates under 

rotations and application of formula 

(10)  in the following way  

 ⃗   (     )   ⃗  (        ), 

where x=x cos+z sin,  y=y, 

z=z cos-x sin. 

Here x=x-xS, y=(y-yS)cos+(z-zS)sin, z=(z-zS)cos-(y-yS)sin. 

At the second stage for final estimation of magnetic induction components  ⃗  (     )  

                ⃗  inverse rotations of the vector  ⃗                       ⃗   should be 

executed according to expressions: 

Bx=BSRx, By=BSRy cos-BSRz sin, Bz=BSRz cos+BSRy sin, 

BSx=Bx cos-Bz sin, BSy=By, BSz=Bz cos+Bx sin. 

 

 

Figure 8. Location of the solenoid in space 

determined by angles of rotation α and β of its 

axis  ⃗⃗  around coordinate axes 0x′ and 0y′ 



Field of a set of arbitrarily oriented solenoids 

It is obvious that in the case of several solenoids 

calculation of the magnetic field   ⃗⃗  ⃗  is executed by 

summation of components of induction  ⃗   or in a 

short form 

 ⃗ (     )  ∑  ⃗  (     ) . 

Fig. 9 shows results of simulation of the magnetic 

field of two solenoids (1 and 2) with orthogonally 

related axes. Relation of the exterior diameter to the 

interior one of each solenoid is 4:3. Distribution of 

the field is represented in the plane passing through 

axes of solenoids and encoded by shades of grey 

color. 

 

Design of the microfocus x-ray tube  

At present there is enough rapid expansion of microfocus x-ray tube applications. It caused by 

the fact that microfocus sources of x-ray radiation have a range of advantages in comparison 

with macrofocus ones: 

• microfocus sources are essentially able to ensure high locality of researches; 

• microfocus instruments ensure a higher quality of images under equal doses in the receiver 

plane; 

• microfocus sources allow obtaining increased (in 5-10 times) images. 

From the point of view of electron optics, microfocus x-ray source (tube) is an axially-

symmetrical electron-beam generator. Traditionally electron generators are made in the form 

of a sequence of the cathode modulator assembly, several lens systems for acceleration and 

focusing and, if necessary, an electron-optical circuit for electron beam sweeps in raster on 

the target surface. 

Microfocus tubes of the transmission type ensure the best quality of images. However, power 

of such tubes with a planar anode cannot exceed 10-20 W due to strong local heating of the 

anode surface. One of methods to increase power of tubes of transmission type consists in 

execution of a narrow channel with special form in the thick anode [10]. Under bombardment 

by accelerated electrons wall of the channel become sources of x-ray quanta. 

Above mentioned methods for calculation of electrical and magnetic fields have been 

integrated in the copyright software FOCUS [11] intended for simulation of electron-optical 

systems of the wide range. Example of the trajectory analysis of an x-ray microfocus tube 

with axially-symmetrical construction is shown in Fig. 10. A narrow channel is executed in 

the anode. Symmetry axis is indicated as 0x. Distribution of the electrical field in a tube is 

shown in Fig. 1. 

Exact positioning of the electron beam into the channel can be ensured by the system of 

magnetic deviation consisting, for example, of two solenoids (ref. Fig. 9) which axes are 

perpendicularly to the symmetry axis 0х. Simulation of the tube with two solenoids 1 and 2 

installed outside has shown a possibility of electron beam positioning at any point of the 

anode surface. So, under the current value 100 ampere-turns in any of solenoids, a value of 

the trajectory deviation Δr on the anode from the axis 0х is approximately 10% of the 

solenoid exterior radius (Fig. 11). 

 

Figure 9. Map of a magnitude of the 

magnetic induction of two solenoids 



  

Figure 10. Electron-optical scheme of the 

microfocus x-ray tube 

Figure 11. Deviation of the electron 

beam by the solenoid magnetic field 

Conclusions 

Boundary Elements Method for simulation of electrostatic fields in axially-symmetrical 

electron-optical systems with practically arbitrary configuration of electrodes has been 

developed. 

Current Elements Method for simulation of magnetic fields of a set of solenoids arbitrarily 

oriented in space has been suggested and researched.  

Methods for simulation of fields have been integrated into the copyright software FOCUS 

intended for design of a system with electromagnetic fields of complicated special 

configuration. 

Results of simulation of a microfocus x-ray tube with high power have been represented. 
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