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Abstract 

In this paper we introduce a newly developed 3D stress/strain analysis technique, called 

digital volumetric speckle photography (DVSP), that has the capability of probing internal 

strain distribution inside opaque solids under load. We take advantage of X-ray computed 

tomography's ability to record 3D volumetric image of solids with internal markers such as 

impunities, voids, etc and treat them as 3D volumetric speckles. Under load these markers 

will move accordingly. We track their displacements via a two-stage 3D FFT process which is 

an extension of the 2D process used in 2D digital speckle photography technique developed in 

1993 by F.P. Chiang and his coworkers. We have successfully applied DVSP to strain 

analysis of rocks, concrete, and composites. The resolution of the technique is a function of 

the hardware used. It varies from macro scale with a medical X-ray CT, to micro scale with an 

industrial X-ray CT, and to nano-scale with a synchrotron radiation CT. 

Keywords: 3D strain analysis, digital volumetric speckle photography, computed 

tomography, FFT. 

Introduction 

Digital Speckle Photography (DSP) technique evolves from the speckle photography 

technique originally proposed by J Burch in 1968 years before the invention of lasers. Over 

the years, it has evolved  into techniques such as laser speckle photography, electron speckle 

photography, white light speckle photography, and one-beam laser speckle interferometry. Up 

until the advent and ubiquitous usage of digital camera, the process of generating useful 

information from a specklegram is always done by using a laser beam. In the pointwise 

approach, a narrow laser beam is directed at a point of a double exposed specklegram. The 

resulting diffraction pattern consists of a circular halo modulated by an array of parallel 

fringes, which can be related to the magnitude and direction of the displacement vector 

experienced by the cluster of speckles within the diameter of the laser beam. For the full field 

approach, an optical spatial filtering process is employed to display the displacement contours 

resolved along a particular direction with a sensitivity corresponding to the particular spatial 

frequency. In the early 1990s the process was digitalized by Chiang and his coworkers[1]. 

Only the surface deformation of a plane object can be obtained using this 2D-DSP technique.  

With the aid of advanced imaging devices, such as high-resolution X-ray computer 

tomography (Micro CT), micro magnetic resonance imaging (micro-MRI) or laser scanning 

confocal microscope (LSCM), high-spatial-resolution volumetric images of opaque or 

semi-transparent materials can be acquired. Combined these advanced imaging devices with 

2D Digital Image Correlation (DIC), a novel and useful technique for the quantification of 3D 

internal deformation, a new technique called DVC(Digital Volume Correlation) has emerged. 

The DVC method is a 3D extension of 2D-DIC, first proposed by Bay et al for strain analysis 

in bone [2]. By extending the 2D-DSP, Chiang and Mao recently developed a new 3D strain 



 

analysis technique called Digital Volumetric Speckle Photography (DVSP) [3], which offers a 

higher computational efficiency than DVC by using the FFT (fast Fourier transform) 

algorithm. In this paper we present the theory of DVSP and its application to 3D strain 

analysis of rock, concrete and woven composite. 

Theory of Digital Volumetric Speckle Photography(DVSP) 

Digital volume images of a 3D solid before and after deformation are reconstructed with 

advanced imaging techniques using a CT or a MRI (either micro or macro). These two 

volume images are defined as reference volume image and deformed volume image, 

respectively. Both of them are divided into volumetric subsets with voxel arrays of 32×32×32 

voxels, for example, and „compared‟. The principle is schematically shown in Fig. 1. Based 

on the theory of 2D digital speckle photography[1, 4], the DVSP principle is as follows[5]: 

Let  1 , ,h x y z and  2 , ,h x y z  be the gray distribution functions of a pair of generic 

volumetric speckle subsets, before and after deformation, respectively, and that 
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where u, v and w are the displacement components experienced by the speckles along the x, y, 

and z directions, respectively. A first-step 3D FFT (Fast Fourier Transform) is applied to both 

h1 and h2 yielding 
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where  1 , ,x y zH f f f  is the Fourier transform of  1 , ,h x y z ,  2 , ,x y zH f f f  is the Fourier 

transform of  2 , ,h x y z , and   stands for Fourier Transform.  , ,x y zH f f f  and 

 , ,x y zf f f  are spectral amplitude and phase fields, respectively. 

Then, a numerical interference between the two 3D speckle patterns is performed at the 

spectral domain, i.e. 

Fig.1 Schematics demonstrating the processing algorithm of 

DVSP 
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where * stands for the complex conjugate, and   is an appropriate constant  0 1  .  

When 0  , Eq.(3) can be expressed as  
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 is essentially an inverse filter (IF). 

When 0.5  , Eq.(3) can be expressed as  
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where     exp , , 2x y z x y zj f f f uf vf wf     
   is a so-called phase-only filter (POF). 

When 1  , Eq.(3) can be expressed as  
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where  *

2 , ,x y zH f f f  can be viewed as a classical matched filter(CMF). When a correlation 

filter is chosen, Peak sharpness and noise tolerance are the criteria to be considered. In the 2D 

digital speckle photography technique [1,4],   is 0.5, and the algorithm is essentially a POF. 

In Ref. [6] the influence of CMF, POF and IF filters on the accuracy of 2D electronic speckle 

photography were analyzed and the results indicated that IF is extremely sensitive to noise, 

thus cannot be used as a reliable filter. There is no significant difference between CMF and 

POF filters. But while the POF filter provides somewhat more accurate estimates of the peak 

position, the reliability of the CMF filter is better. In Fig.2 , normalized impulse function 

distribution are shown. It is noted that the peak impulse with POF is sharper. 

  

(a)   (b) 

Fig.2 Normalized impulse function distribution with different filter (a) CMF filter; (b) 

POF filter 
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In this paper, 0.5   is adopted. As a result Eq.(3) can then be written as 
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where  1 , ,x y zf f f and  2 , ,x y zf f f , are the phases of  1 , ,x y zH f f f and  2 , ,x y zH f f f , 

respectively. It is seen that 
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Finally, a function is obtained by performing another 3D FFT resulting 
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which is an expanded impulse function located at (u, v, w). This process is carried out for 

every corresponding pair of the subsets. By detecting the crest of all these impulse functions, 

an array of displacement vectors at each and every subset is obtained, from which strain 

tensors can be calculated using an appropriate strain-displacement relation. 

 

Fig.3 Schematics showing the interpolation procedure 

In the above analysis the deformation of the subset itself is neglected. Because of the 

discrete nature of digital volume images, the displacement vectors evaluated from equation (9) 



 

are integral multiples of one voxel. In order to obtain more accurate and sensitive 

characterization, a sub-voxel investigation of the crest position is needed. To achieve this, we 

select a cubic subset with 3×3×3 voxels surrounding an integral voxel of the crest and a cubic 

spline interpolation is employed to obtain the interpolated values among the integral voxels in 

each respective dimension. After interpolation, the cubic subset is enlarged and a new three 

dimensional array is generated with size depending on the interpolation interval. The smaller 

the interval and the bigger the array size give rise to higher interpolation accuracy. The price 

to pay, however, is the need for more computational time and more memory space. In 

practical applications there would be a tradeoff between the two competing needs. By 

detecting the positions of peak values of the new array, displacements of subvoxel accuracy 

can be obtained. The interpolation procedure is illustrated schematically in Fig.3.  

Strain estimation 

The internal strain tensor ε can be derived from the displacement fields. Due to the influence 

of unavoidable noise contained in the CT images, the displacements determined above 

contains discontinuities or noise that are not a feature of the material but a consequence of the 

discrete nature of the analysis performed. The errors in the local displacements may be 

amplified during the strain computation process. By using PLS (Point Least-Squares) 

approach, the errors can be largely reduced during the process of local fitting, and the strains 

estimated will be more accurate [7].  

The element of PLS approach is shown as followings. To compute the local strains of each 

considered point, a regular cubic box with size of (2N+1) × (2N+1) × (2N+1) discrete points 

surrounding the point is selected. If the strain calculation window is small enough, the 

displacements in each direction can be reasonably assumed to be linearly distributed, and 

therefore can be mathematically expressed as 
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where x, y, z = [–N,N]are the local coordinates within the strain calculation box, u(x, y, z), 

v(x, y, z) and w(x, y, z) are the displacements directly obtained by DVSP method, and ai= 0,1,2,3, 

bi= 0,1,2,3 and ci= 0,1,2,3 are the unknown polynomial coefficients to be determined. With the 

Least-squares or Multiple Regression Analysis, the unknown coefficients can be estimated. 

Then, the six Cauchy strain components εx, εy, εz, εxy,εxz and εyz at the interrogated point can 

thus be calculated as 
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With these Cauchy strain components, the principal strains can be calculated, and then the 

deviatotic strain εs and the volumetric strain εv are written as  
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where ε1, ε2 and ε3 are the major, intermediate and minor principal strains, respectively. 

X-ray Micro-CT 

Over the years, medical CT scanners have been drastically improved in terms of image quality, 

imaging speed and deposited radiation dosage. But the spatial resolution remains limited to 

several hundreds of micrometres due to the dimension of the investigated object, i.e. a human 

patient. The micro-CT with high-resolution has emerged in the 1980s.  Based on the type of 

X-ray generation, X-ray micro-CT can be divided into synchrotron-based and lab-based 

micro-CT (using X-ray tubes). Since synchrotron sources have a high X-ray flux, X-ray optics 

can be used to achieve very high spatial resolution up to tens of nanometers. Combined with 

different CT scanners, the resolution of DVSP varies from macro scale with a medical x-ray 

CT, to micro scale with an industrial x-ray CT, and to nano scale with a synchrotron radiation 

CT.  

In this study, the main components of the industrial X-Ray computer tomography system are 

a microfocus X-ray source from YXLON (Feinfocus 225kV), an X-ray detector unit 

(1024×1024 pixels) from PerkinElme (XRD 0822AP 14), and a motorized rotation stage from 

Newport. The X-ray has a focus with size of 3 × 6 μm, a voltage range of 50-225kV, and the 

tube current ranging from 0 to 1440μA. A uniaxial compression setup has been designed and 

built to allow performing micro-tomography of a specimen under load (in situ). 

 

Fig.4 The Micro-CT system and the loading setup used to record the volumetric image 

of the specimen at each loading step 

Applications of DVSP 

Internal Strain Analysis of Red Sandstone with a Pre-existing Crack under Uniaxial 

Compression 

A cuboid sample of red sandstone with a pre-existing crack under uniaxial compression was 

scanned in situ using the X-ray CT system. The sample has the size of   23 mm (L) 

10mm(W) 40 mmc(H). A partial circular surface crack with an inclination of 45 with 

respect to the loading axis is carved into the specimen as shown in Fig5(a). The whole 

compression process was divided into 4 steps. The load-displacement history, reconstructed 

3D images of Step 3 and Step 4, and a meridian slice of the specimen are shown in Fig.5 (a) , 

(b), (c), and (d), respectively. The volume image of step 1 was used as the reference image. 

Loading setup Detector 

X-ray resource 

Rotation stage 



 

The subsequent deformed images were “compared” to the reference image via the DVSP 

method and resulted in displacement contours. The sectional image along section AA‟ shown 

in Fig.5(d) is depicted in Fig.5(e), and the u, v, w displacement fields and yz strain 

distributions are plotted in Fig.5 (f),(g), (h), and (i), respectively. 

 

Fig.5 Application in red sandstone with pre-existing crack under Uniaxial Compression; 

(a) Load-displacement curve; (b) and (c)  are reconstructed 3D images of Step 3 and 

Step 4; (d) Meridian slice; (e) Section along AA’; (f) u-field; (g) v-field; (h) w-field; (i) 

yz strain 

Internal Strain Analysis of Concrete under Uniaxial Compression 

The concrete specimen is made from the subgrade of one highway. The size of the specimen 

is 2548 mm. The compaction of the specimen was achieved by applying a compressive 

load in the axial (z) direction. The whole compression process was divided into 8 loading 

steps. In each step, the loading was kept constant while the specimen was scanned. By using 

DVSP we calculated the displacement and strain distributions in different sections of the 

specimen. 

 (a)                      

(b)                      (c)                       (d) 

Fig.6.Reconstructed meridian sectional images under different loading; 

(a)5.3MPa ;(b)14.80MPa ; (c) 18.50MPa;(d)24.70MPa 
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Fig.6 shows the reconstructed meridian section images under different loading conditions. It 

is difficult to detect cracks from these gray images until the loading is at 24.70 MPa. Fig.7 

shows the distributions of the major principal strain of the meridian section corresponding to 

the pictures shown in Fig.6. The light yellow mainly occurs at interface zones between 

aggregates and mortar which indicates the higher strain value appearing in these zones. The 

specimen tends to break at interface zones as demonstrated in Fig.6 (d). 

 
        (a)                      (b)                      (c)                       (d) 
Fig. 7. Distribution contours of the first principal strain; (a)5.3MPa ;(b)14.80MPa ; (c) 

18.50MPa;(d)24.70MPa 

 

 
Fig. 8. Load-displacement curve , section images and deformation contours(a) 

Load-displacement curve (b) section image of Step 10; (c) Section image of Step 11; (d) 

u-field of section image of Step 10; (e) v-field of  section image of Step 10; (f) w-field the 

section of Step 10, (g) εxy contours of the section; 



 

Internal Strain Analysis of Composite under 3-point Bending 

 A tri-direction woven fabric composite beam with the size of 40mm(L)×19mm(H)×9mm(T) 

under 3-point bending was scanned in situ[8]. The matrix of the composite is epoxy resin, 

occupying 55% by volume. The filament diameter is 17μm. The experimental process is 

divided into 11 Step. The load-displacement curve, section images of Step 10 and Step 11 are 

shown in Fig 8(a), (b), and (c), respectively. The displacement and strain fields are presented 

in Fig.8 (d), (e), (f), and (g), respectively. As can be seen from the pictures that it is easy to 

detect the process of deformation localization. 

Summary 

We have demonstrated that the DVSP method can be effectively applied to analyzing internal 

strain distribution of red sandstone, concrete and composite, and we believe the DVSP 

technique has the potential of advancing the art of all 3D stress/strain analysis. 
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