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Abstract 

This paper deals with contact analysis method of rolling bearings. A mathematical model is 

presented for the purpose of contact analysis of rolling bearings based on the principle of 

mathematical programming method at the first. Then, three-dimensional (3D), finite element 

method (FEM) is introduced in the mathematical model to calculate deformation influence 

coefficients and gaps of assumed pairs of contact points between contact surfaces. Special 

software is developed to realize the procedures of contact analysis. With the help of the 

developed software, contact analyses are conducted for a deep groove ball bearing and a 

cylindrical roller bearing. In the case of the ball bearing, it is found that the calculated contact 

pressures on ball surface are more reasonable and accurate than the ones obtained by 

commercial CAE software. In the case of the roller bearing, it is found that edge-loads (non-

Hertz contact that cannot be analyzed by Hertz theory) on the two ends of the roller surface are 

analyzed successfully by the method presented in this paper when the rollers are not crowned 

longitudinally. It is also found that the edge-loads are disappeared and the contact pressure 

becomes uniform distribution on the roller surface when the rollers are crowned on the two ends 

using Johson-Gohar [1] curve. Since the calculated results given in this paper cannot be 

obtained by using commercial CAE software and other numeric methods, the mathematical 

model and numeric method presented in this paper have a great practical meaning in 

engineering design and calculations of the rolling bearings. 

Keywords : Finite element method, Contact analysis, Mathematical programing method, 

Rolling bearing 

1. Introduction 

It is a very important thing for machine designers to evaluate lifetime and radial rigidity of the 

rolling bearings when they decide to use. Unfortunately, it is still a difficult thing to evaluate 

contact strength and lifetime of the rolling bearings accurately in theory. Also, it is still a 

difficult thing to calculate contact pressure and radial rigidity of the roller bearings accurately 

in theory. This is because there have been still some unsolved problems remained in strength 

and performance analyses of the rolling bearings, though it is a very long history to use the 

rolling bearings in various kinds of machines.  

 

In the case of the ball bearings, usually, Hertz theory [2] is used to calculate the contact pressure 

and radial rigidity of the ball bearings. Since Hertz theory can only consider local deformation 

of contact areas of the ball bearings and the total structural deformation of the ball, outer ring 

and inner ring as well as housings cannot be included, Hertz theory has a limit in engineering 

calculations when the total structural deformation mentioned above is considered. In the case 

of the roller bearings, since edge-loads exist between the two contact surfaces, contact problem 



of the roller bearings belongs to a non-Hertz contact problem and Hertz theory cannot be used 

for contact analysis of the roller bearings. In order to solve the contact problem of the roller 

bearings, an approximate contact model of using a roller contacting a surface of infinite length 

was used [3]-[5]. But since the surface of infinite length also cannot consider the effects of 

structural sizes and shapes of the inner and outer rings, this contact model is also not so accurate 

for contact analysis of the roller bearings. Finally, FEM was suggested to do contact analysis 

of the roller bearings [3][6]. Indeed, FEM is a very practical method for structural analysis and 

very successful in many kinds of engineering calculations. But, unfortunately, this method is 

not so successful in contact analysis of machines and machine elements. The problem of using 

some commercial CAE software in contact analysis of the bearings shall be introduced in 

Section 3 of this paper. 

 

This paper tries to present a new FEM that can conduct contact analysis of the rolling bearings 

accurately. Firstly, a new mathematical model is presented in this paper for contact analysis of 

the rolling bearings based on the principle of the mathematical programming method. Then, 3D, 

FEM is introduced in the mathematical model to calculate deformation influence coefficients 

and gaps of the assumed pairs of contact points on the contact surfaces. Special software is 

developed through efforts of many years. With the help of the developed software, contact 

analyses of a deep groove ball bearing and a cylindrical roller bearing are conducted 

successfully. Calculation results shows that the special software can calculate more reasonable 

and accurate contact pressure distribution of the rolling bearings than the commercial software 

SolidWorks and some other finite element method [10] stated in this paper. The maximum 

contact pressure and radial contact rigidity of the ball bearing are also analyzed with Hertz 

theory. It is found that the results obtained by the special software are similar to the results 

obtained by Hertz theory, but they are not exactly equal. The total structural deformation of the 

ball, outer ring and inner ring can be thought to be the main reason to result in the difference 

between the method presented in this paper and Hertz theory. This assumption shall be 

confirmed experimentally in the near future. 

2. Structural dimensions of the bearings used as research objects 

Structures and dimensions of the rolling bearings used as research objects are illustrated in Fig.1. 

In Fig.1, (a) and (b) are a deep groove ball bearing (type number 6332) and a cylindrical roller 

bearing (type number NU412) respectively. They are made by NTN, a Japanese bearing 

company [8]. Contact analyses are conducted for them with commercial software SolidWorks 

and special FEM software developed in this paper respectively. Hertz theory is also used to 

calculate contact pressure and radial rigidity of the ball bearing in this paper in order to make a 

comparison with the results obtained by the special FEM software. 

 

        
(a) Ball bearing                      (b) Roller bearing 

Figure 1. Structures of the ball and roller bearings used as research objects 
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3. Problems of some commercial software used for contact analysis 

As stated above, some commercial software is very successful in many kinds of engineering 

calculations, but it is not so successful in contact analysis of machines and machine elements. 

In order to make this problem clear in this paper, some results of using the commercial 

software SolidWorks for contact analysis of the ball and roller bearings are introduced in the 

following.  

 

In SolidWorks software, there is a function called SolidWorks Simulation that can be used to 

do CAE simulations. SolidWorks Simulation is originated from the famous CAE software 

COSMOSWorks [9]. In the COSMOSWorks, contact analysis function is also included. So, 

this paper uses this function to conduct contact analyses of the ball and roller bearings given 

in Fig. 1. When the contact analyses are conducted, outside surfaces of the bearing outer rings 

are fixed as boundary conditions and a radial load P is applied on the inside surfaces of the 

bearing inner rings as shown in Fig. 2(a) and 3(a) through bearing shafts that are inserted into 

the central holes of the inner rings. The bearing shaft and the inner ring are unified as one 

elastic body in the analyses.  

 

Calculation results of the ball bearing are given in Fig. 2. In Fig. 2, (a) is a contour map of 

calculated Von Mises stresses distributed on the section that goes through the ball center and 

is perpendicular to the bearing axis. Fig. 2(a) indicates that only four balls at the lower part of 

the bearing are in contact with the raceways of the inner and outer rings. Fig. 2(b) is FEM 

mesh-diving pattern of the ball. As shown in Fig. 2(b), contact areas of the ball surface are 

fine mesh-divided in order to ensure high calculation accuracy. Of course, the contact areas of 

the raceways of the outer and inner rings are also fine mesh-divided responsively. Fig. 2(c) is 

a contour map of calculated contact pressure distributed on the ball surface. From Fig. 2(c), it 

is found that though contact pattern of the ball takes the shape of an elliptical contact, the 

maximum contact pressure is not located at the center of the elliptical area. It distributes along 

a closed elliptical curve as shown in Fig .2(c) illustrated in the red line. Also the maximum 

contact pressure is calculated to be about twice the value calculated by Hertz theory. This 

means that SolidWorks cannot calculate contact pressure distribution and the maximum 

contact pressure correctly if it is used to conduct contact analysis of the ball bearings. 

 

Calculation results of the roller bearing are given in Fig. 3. In Fig. 3, (a) is a contour map of 

calculated Von Mises stresses distributed on the section going through the center point of the 

roller width and being perpendicular to the bearing axis. Fig. 3(a) also indicates that only four 

rollers at the lower part of the bearing contact the raceways of the inner and outer rings. Fig. 

3(b) is FEM mesh-diving pattern of the roller. As shown in Fig. 3(b), contact areas of the 

roller surface are fine mesh-divided. Of course, contact areas of the raceways are also fine 

mesh-divided responsively. Fig. 3(c) is a contour map of calculated contact pressure 

distributed on the roller surface. Fig. 3(c) indicates that contact pattern of the roller bearing 

takes the shape of an elliptical contact (the roller is crowned longitudinally using Johson-

Gohar curve [1]), but the maximum contact pressure is also not located at the center of the 

contact area. It distributes along a closed elliptical curve as shown in Fig .3(c) illustrated in 

the red line. It means that there is also a problem existing for the roller bearing that 

SolidWorks cannot calculate contact pressure distribution of the roller bearing correctly. Per a 

long-time experience of the author on CAE analysis using commercial CAE software, it is 

found that not only SolidWorks, but also some other commercial software, such as ANSYS 

and ADINA, have the similar problem like SolidWorks that they cannot calculate contact 

pressure distribution accurately when they are used to do contact analyses of machines or 

machine elements. 



 

     
(a) Von Mises stresses     (b) FEM mesh-dividing    (c) Contact pressure 

Figure 2. Calculation results of the ball bearing using SOLIDWORKS 

 

     
(a) Von Mises stresses     (b) FEM Mesh-dividing    (c) Contact pressure 

Figure 3. Calculation results of the roller bearing using SOLIDWORKS 

 

Guo and Parker [10] also conducted contact analyses for a deep groove ball bearing and a 

cylindrical roller bearing using FEM and specially developed software. Calculation results 

obtained by Guo and Parker are given in Fig. 4. Fig. 4(a) and (b) are calculated contact loads 

distributed on the ball and the roller surfaces respectively. From Fig. 4, it is found that quite 

rough results were obtained in Guo and Parker’s research.  

 

Based on the results mentioned above, it can be understood well that it is a quite difficult thing 

to conduct loaded bearing contact analysis and get correct contact pressure distribution of the 

bearings using available commercial CAE software and finite element techniques at the present 

situation. So, it is necessary to develop a new method and technology that can conduct contact 

analysis of the bearings correctly. This paper tries to present a new mathematical model and 

numeric method for contact analysis of the rolling bearings. 

 

                       
(a) Load distribution on ball surface         (b) Load distribution on roller surface 

Figure 4. Guo and Parker’s results on bearing contact analysis [10]  



4. A new mathematical model and numeric method for bearing contact analysis 

 

4.1 Principle used for contact analysis of the rolling bearings 

 

      
(a) Contact of ball with inner ring          (b) Contact of ball with outer ring 

Figure 5. Mathematical model used for contact analysis of rolling bearings 

 

Models used for contact analysis of the ball and roller bearings are given in Fig. 5. In Fig. 5, (a) 

is used to stand for the contact of a ball (or roller) with the inner ring raceway and (b) is used 

to stand for the contact of the ball (or roller) with the outer ring raceway. It is assumed that an 

external load P (usually, equals to radial load of the bearings) is applied on the bearings in 

vertical direction as shown in Fig. 5. It is assumed that only elastic deformation occurred in the 

contact problem of the rolling bearings. 

 

In Fig. 5(a), firstly, a lot of pairs of contact points, such as (1-1’), (2-2’), …, (j-j’), …, (k-k’) 

and (n-n’), are assumed on the contact surfaces of the ball (roller) and the inner ring raceway 

along the vertical direction. In Fig. 5(a), 1,2, …, j, …, k and n are the assumed points on the 

contact area of the ball (roller) surface and 1’,2’, …, j’, …, k’ and n’ are the responsive points 

on the contact area of the inner ring raceway. The common normal lines of these assumed pairs 

of contact points are parallel to the vertical direction and pass through the pairs of contact points. 

It is assumed that these pairs of contact points have possibility to come into contact when the 

external load P is applied. 

 

4.1.1 Deformation compatibility relationship of the pairs of contact points 

 

As shown in Fig. 5(a), for an optional pair of contact points (k-k’), 𝐹𝑘 is used to denote the 

contact force between the pair of contact points (k-k’). Of course, direction of 𝐹𝑘 is along the 

direction of its common normal line. Also, 𝐹𝑗 is the contact force between the pair of contact 

points (j-j’) along its common normal line. Gaps between the pairs (j-j’), (k-k’) and (n-n’) are 

denoted as 𝜀𝑗, 𝜀𝑘 and 𝜀𝑛 respectively. Relative deformation of the ball (roller) relative to the 

inner ring along the vertical direction is denoted as 𝛿1. Elastic deformation of the pair of contact 

points (k-k’) along its common normal line direction are denoted as 𝜔𝑘 and 𝜔𝑘′ respectively. 

If (k-k’) comes into contact after P is applied, (ω𝑘 + 𝜔𝑘′ + 𝜀𝑘), the amount of the deformation 

and the gap of the pair of points (k-k’), shall be equal to the relative deformation 𝛿1. But, if (k-

k’) doesn't come into contact, (𝜔𝑘 + 𝜔𝑘′ + 𝜀𝑘) shall be greater than 𝛿1. These relationships are 

called deformation compatibility relationships and they can be expressed with Eq. (1) and (2) 

in the following. Eq. (1) and (2) can be summarized into Eq. (3).  
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𝜔𝑘 + 𝜔𝑘′ + 𝜀𝑘 − 𝛿1 > 0  (Not contact)                  (1) 

 

𝜔𝑘 + 𝜔𝑘′ + 𝜀𝑘 − 𝛿1 = 0   (Contact)                    (2) 

 

𝜔𝑘 + 𝜔𝑘′ + 𝜀𝑘 − 𝛿1 ≥ 0     (𝑘 = 1, 2, … , 𝑛)               (3) 

 

Eq. (3) is not only suitable for an optional pair of contact points (k-k’), but also suitable for all 

the pairs of contact points assumed on the contact surfaces of the ball (roller) with the inner 

ring raceway. In Eq. (3), 𝑛 is the total number of the assumed pairs of contact points. 

Since the elastic deformation 𝜔𝑘  and 𝜔𝑘′  can be expressed with deformation influence 

coefficients 𝑎𝑘𝑗  and 𝑎𝑘′𝑗′ , then Eq. (4) and (5) can be obtained. If Eq. (4) and (5) are 

substituted into Eq. (3), then Eq. (6) can be obtained.  

 

𝜔𝑘 = ∑ 𝑎𝑘𝑗𝐹𝑗

𝑛

𝑗=1

                                          (4) 

 

𝜔𝑘′ = ∑ 𝑎𝑘′𝑗′𝐹𝑗

𝑛

𝑗=1

                                         (5) 

 

∑[𝑎𝑘𝑗 + 𝑎𝑘′𝑗′]

𝑛

𝑗=1

× 𝐹𝑗 + 𝜀𝑘 − 𝛿1 ≥ 0   (𝑘 = 1, 2, … , 𝑛)         (6) 

 

Where, 𝑎𝑘𝑗  and 𝑎𝑘′𝑗′  are deformation influence coefficients of the pairs of contact points 

along their common normal lines. 𝑎𝑘𝑗 and 𝑎𝑘′𝑗′ can be calculated through 3D, finite element 

analysis.  

 

4.1.2 Load equilibrium relationship of the pairs of contact points 

 

Except for the deformation compatibility relationship as shown in Eq. (6), a load equilibrium 

relationship of the pairs of contact points can also be built as given in Eq. (7). Where, 𝑃 is the 

external load applied on the bearing. 

 

∑ 𝐹𝑘

𝑛

𝑘=1

= 𝑃                (𝑘 = 1, 2, … , 𝑛)               (7) 

 

In the case of the ball (roller) contacting the outer ring raceway as illustrated in Fig. 5(b), the 

deformation compatibility relationship and load equilibrium relationship can also be built for 

the assumed pairs of contact points on the contact surfaces of the ball (roller) with the outer 

ring raceway in the same way. Eq. (8) and (9) are the two relationships for the pairs of contact 

points on the contact surfaces of the ball (roller) with the outer ring raceway. 

 

∑ [𝑎𝑘𝑗 + 𝑎𝑘′𝑗′]

𝑛+𝑛

𝑗=𝑛+1

× 𝐹𝑗 + 𝜀𝑘 − 𝛿2 ≥ 0   (𝑘 = 𝑛 + 1, … , 𝑛 + 𝑛)    (8) 

 



∑ 𝐹𝑘

𝑛+𝑛

𝑘=𝑛+1

= 𝑃                (𝑘 = 𝑛 + 1, … , 𝑛 + 𝑛)           (9) 

 

Where, 𝛿2 is the relative deformation of the ball (roller) relative to the outer ring along the 

vertical direction. By adding Eq. (6) and Eq. (8) together, then Eq. (10) can be obtained. Also, 

by adding Eq. (7) and Eq. (9) together, then Eq. (11) can be obtained. Where, δ = 𝛿1 + 𝛿2 is 

the total relative deformation among the outer ring, the ball (roller) and the inner ring along the 

vertical direction. 

 

∑[𝑎𝑘𝑗 + 𝑎𝑘′𝑗′]

2𝑛

𝑗=1

× 𝐹𝑗 + 𝜀𝑘 − 𝛿 ≥ 0   (𝑘 = 1,2, … , 2𝑛)       (10) 

 

∑ 𝐹𝑘

2𝑛

𝑘=1

= 2𝑃    (𝑘 = 1,2, … , 2𝑛)                    (11) 

 

If Eq. (10) is written into a matrix expression, then Eq. (12) can be obtained. 

 

[𝑆]{𝐹} + {𝜀} − 𝛿{𝑒} ≥ {0}                       (12) 

Where,  

[S] = [
[𝑆1] [0]

[0] [𝑆2]
]    

[𝑆1] = [𝑆𝑘𝑗] = [𝑎𝑘𝑗 + 𝑎𝑘′𝑗′] , 𝑘 = 1, 2, 3, … , 𝑛; 𝑗 = 1, 2, 3, … , 𝑛  

[𝑆2] = [𝑆𝑘𝑗] = [𝑎𝑘𝑗 + 𝑎𝑘′𝑗′] , 𝑘 = 𝑛 + 1, 𝑛 + 2, … , 𝑛 + 𝑛; 𝑗 = 𝑛 + 1, 𝑛 + 2, … , 𝑛 + 𝑛 

[0] = [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

]   

{𝐹} = {𝐹1, 𝐹2, … , 𝐹𝑘, … , 𝐹𝑛+𝑛}𝑇 

{𝜀} = {𝜀1, 𝜀2, … , 𝜀𝑘, … , 𝜀𝑛+𝑛}𝑇  

{𝑒} = {1, 1, … ,1}𝑇 

{0} = {0, 0, … ,0}𝑇  
 

Also, If Eq. (11) is written into a matrix form, Eq. (13) can be obtained.  

 

{𝑒}𝑇{𝐹} = 2𝑃                              (13)  
 

Eq. (12) and (13) can be used as constrain conditions in contact analysis of the bearings to 

identify which pair of contact points is in contact and which pair is not in contact when the 

external load P is applied. Contact problem of bearings can be explained as looking for the 

contact force 𝐹𝑘 (𝑘 = 1,2,3, … ,2𝑛) of the pairs of contact points that must satisfy Eq. (12) 

and (13) under the conditions of knowing the deformation influence coefficients 𝑎𝑘𝑗, 𝑎𝑘′𝑗′, 

the gaps 𝜀𝑘 and the external load P in advance. 

 

4.2. A new mathematical model used for contact Analysis of the rolling bearings 

 

A new mathematical model is built to solve Eq. (12) and Eq. (13) based on the principle of the 

mathematical programming method [11]-[12] as follows. Since Eq. (12) is an inequality 

constraint equation that may be strictly positive or identically zero, it can be transformed into 



an equality constraint equation by introducing a so-called slack variable {𝑌}  (consists of 

positive variables) based on the principle of the modified simplex method [11]-[12]. Then Eq. 

(14) and (15) can be obtained. 

 

[𝑆]{𝐹} + {𝜀} − 𝛿{𝑒} − [𝐼]{𝑌} = {0}                   (14) 
or  

-[𝑆]{𝐹} + 𝛿{𝑒} + [𝐼]{𝑌} = {𝜀}                      (15) 

Where 

{𝑌} = {𝑌1, 𝑌2, … , 𝑌𝑘, … , 𝑌2𝑛}𝑇 (Slack variables) 

[𝐼]= a unit matrix of 2n×2n 

 

Then the two equality constraint equations of Eq. (13) and (15) are obtained. The next task is 

to make an objective function 𝑍  that is necessary to build the mathematical programming 

model. The objective function Z can be made artificially through introducing some positive 

variables 𝑋2𝑛+1 , 𝑋2𝑛+2 , ..., 𝑋2𝑛+2𝑛 , 𝑋2𝑛+2𝑛+1  (usually called artificial variables) to every 

constrain equation based on the principle of the modified simplex method [11]-[12]. Then the 

mathematical programming model used for contact analysis of the bearings can be made as 

follows. 

 

Mathematical programming model used for bearing contact analysis 

Objective Function: 

𝑍 = 𝑋2𝑛+1 + 𝑋2𝑛+2 + ⋯ + 𝑋2𝑛+2𝑛 + 𝑋2𝑛+2𝑛+1                  (16) 

Constraint Conditions: 

−[𝑆]{𝐹} + 𝛿{𝑒} + [𝐼]{𝑌} + [𝐼]{𝑍′} = {𝜀}                       (17)  

{𝑒}𝑇{𝐹} + 𝑋2𝑛+2𝑛+1 = 2𝑃                                   (18)  
Where, 

{𝑍′} = {𝑋2𝑛+1, 𝑋2𝑛+2, … , 𝑋2𝑛+2𝑛}𝑇 (Artificial variables) 

[S] = [
[𝑆1] [0]

[0] [𝑆2]
]    

[𝑆1] = [𝑆𝑘𝑗] , 𝑘 = 1, 2, 3, … , 𝑛; 𝑗 = 1, 2, 3, … , 𝑛  

[𝑆2] = [𝑆𝑘𝑗] , 𝑘 = 𝑛 + 1, 𝑛 + 2, … , 𝑛 + 𝑛; 𝑗 = 𝑛 + 1, 𝑛 + 2, … , 𝑛 + 𝑛 

[0] = [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

]       (𝑛 × 𝑛) 

{𝐹} = {𝐹1, 𝐹2, … , 𝐹𝑘, … , 𝐹2𝑛}𝑇 
{𝑌} = {𝑌1, 𝑌2, … , 𝑌𝑘, … , 𝑌2𝑛}𝑇 (Slack variable) 

{𝜀} = {𝜀1, 𝜀2, … , 𝜀𝑘, … , 𝜀2𝑛}𝑇  

{𝑒} = {1, 1, … ,1}𝑇 

𝐹𝑘 ≥ 0, 𝑌𝑘 ≥ 0, 𝜃𝑘 ≥ 0, 𝜃 ≥ 0, 𝑘 = 1, 2, … , 2𝑛 

𝑋2𝑛+𝑚 ≥ 0, 𝑚 = 1, 2, … , 2𝑛 + 1 

 

The contact force 𝐹𝑘 and the total radial deformation δ can be calculated by minimizing the 

objective function 𝑍 in Eq. (16) under the constrain conditions of Eq. (17) and (18) using the 

modified simplex method [11]-[12]. 

 

4.3 Software development 

 

Software development is conducted to realize procedures of the bearing contact analysis. 

Firstly, 3D, FEM method is used to calculate the deformation influence coefficients 𝑎𝑘𝑗, 



𝑎𝑘′𝑗′ that are necessary to form the [S1] and [S2] in the matrix [S]. Special FEM software is 

developed using Super-parametric hexahedron solid element, which has 8 nodes at the corner 

and 3 nodes inside the element [13]. FEM models and mesh-dividing patterns of the ball and 

roller bearings are given in Fig. 6 and 7 respectively. Fig. 6(a) and Fig. 7(a) are FEM models 

and mesh-dividing patterns of the whole ball and roller bearings respectively. Fig. 6(b) and 

Fig. 7(b) are enlarged views of the mesh-dividing patterns of the ball and roller only 

respectively. As shown in Fig. 6 and Fig. 7, meshes on the contact areas of the outer rings, ball 

(roller) and inner rings are fine divided in order to ensure high calculation accuracy of FEA. 

 

             
(a) Ball bearing                        (b) Ball 

Figure 6. Mesh-dividing patterns of the ball bearing 

 

    
(c) Roller bearing                (d) Roller 

Figure 7. Mesh-dividing patterns of the roller bearing 

 

Special software development is also conducted to realize the procedures of the mathematical 

programming for the bearing contact analysis after the deformation influence coefficients are 

available by FEA. Then, contact load {F} and the total radial deformation 𝛿 can be available 

after the mathematical programming is conducted with the help of the developed software. 

Contact pressure distribution can be calculated after the contact load {F} is available through 

calculating the contact load distributed on unit contact area. Also, radial rigidity 𝐾  of the 

bearings can be calculated through this expression 𝐾 = 𝑃/δ. Calculation results are introduced 

in the following. 



5. Calculation results and discussions 

 

5.1 Contact pressure distribution 

 

Firstly, loaded bearing contact analysis is conducted for the deep groove ball bearing as shown 

in Fig. 1(a) with the developed FEM software. Fig. 8(a) and 9(b) are calculated contact pressure 

distributed on the ball surfaces. Fig. 8(a) is a contour map of the contact pressure between the 

ball and the outer ring raceway. Fig. 8(b) is a contour map of the contact pressure between the 

ball and the inner ring raceway. The external load P is equal to 40kN when the contact analysis 

is conducted. From Fig. 8, it is found that the contact pressure on the ball surfaces is calculated 

to be beautiful elliptical distribution and the maximum contact pressure point is located at the 

center of the contact areas. These results are more reasonable than the results obtained by 

SolidWorks and the reference [10] as given in Fig. 2 and Fig. 4(a). It is also found that the 

maximum contact pressure on the upper part of the contact surfaces (the ball with the outer ring 

raceway) is a little smaller than the one on the lower part of the contact surfaces (the ball with 

the inner ring raceway). This is because the radius of curvature of the inner ring raceway is 

smaller than that of the outer ring raceway. The smaller radius of curvature of the contact surface 

shall bring greater contact stress based on Hertz theory. 

 

The maximum contact pressure of the ball bearing is also calculated with Hertz theory. Fig. 9 

is a comparison of the maximum contact pressure between the developed FEM software and 

Hertz theory. In Fig. 9, abscissas are radial load P applied on the bearing and the ordinates are 

the maximum contact pressure on the ball surface. Fig. 9(a) is the maximum contact pressure 

between the ball and the inner ring raceway and Fig. 9(b) is the one between the ball and the 

outer ring raceway. Fig. 9(a) indicates that the results obtained by the FEM software are smaller 

than the ones obtained by Hertz theory. Fig. 9(b) indicates that the results obtained by the FEM 

software are greater than the ones obtained by Hertz theory. The difference between the two 

methods can be thought to be the effect of the total structural deformation of the bearing. As it 

has been stated above, Hertz theory cannot consider of the total structural deformation of the 

ball, inner and outer ring while FEM can consider the total structural deformation of the bearing. 

Secondly, loaded bearing contact analysis is conducted for the cylindrical roller bearing as 

shown in Fig. 1(b) with the developed FEM software. Fig. 10(a) and 10(b) are calculated contact 

pressure distributed on the roller surfaces when the roller is not crowned. Fig. 10(a) is the 

contact pressure between the roller and the outer ring raceway. Fig. 10(b) is the contact pressure 

between the roller and the inner ring raceway. The external load P is equal to 4kN when the 

contact analysis is conducted. From Fig. 10, it is found that contact pressure on the roller surface 

is calculated to be uniform distribution along axial direction of the roller except for the two end 

areas of the roller. It is also found that the edge-loads are calculated on the two end areas of the 

roller beautifully. It is a big success or progress that the developed FEM software can analyse 

edge-loads of an uncrowned roller bearing successfully. By comparing Fig. 10 with Fig. 4(b), 

it is found that the mathematical model and numeric method presented in this paper can 

calculate more reasonable results than method given in reference [10]. The fact is that it is still 

a difficult thing for some commercial CAE software to analyse the edge-loads correctly at the 

present situation. 

 

Loaded bearing contact analysis is conducted also for the roller bearing when the roller is 

crowned on the two end areas using Johson-Gohar curve [1] as given in Eq. (19). Fig. 11(a) and 

11(b) are imagines of the roller before and after crowned. Calculation results for the crowned 

roller bearing are given in Fig. 12. Fig. 12(a) is the contact pressure distribution between the 

crowned roller and the outer ring raceway. Fig. 12(b) is the contact pressure distribution 



between the crowned roller and the inner ring raceway. From Fig. 12, it is found that the edge-

loads disappeared on the two end areas of the roller and contact pressure becomes uniform 

distribution longitudinally in comparison with the results given in Fig. 10. It is also found that 

the maximum contact pressures are reduced about 17% and 21% when the roller is crowned by 

comparing Fig. 12(a) with Fig. 10(a) and Fig. 12(b) with Fig. 10(b). The results in Fig. 12 

indicate that Johson-Gohar curve is a very nice curve to be used as crowning curve for the roller 

bearings. It can reduce edge-loads greatly and bring the roller bearing a uniform contact 

pressure distribution. 

 

𝑞(𝑥) =
2𝑃

𝜋𝑙𝐸′
𝑙𝑛

1

1 − (1 − 0.3033𝑏/𝑎)(2𝑥/𝑙)2
               (19) 

 

Where, 𝑙 is an effective contact length of the roller and 𝑎 is a half of the effective contact 

length 𝑙. b is a half width of the contact. E is Young's modulus and ν is Poisson's ratio. E′ is 

equivalent Young's modulus that can be obtained by following Eq. (20). P is a load applied on 

the roller. x is used to stand for longitudinal position of a point along the axial direction. 𝑞(𝑥) 

is used to denote the drop (quantity of crowning) at the position x in the axial direction. 

 

E′ =
𝐸

1 − 𝜈2
                                (20) 
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(a) The upper part of the contact domain      (b) The lower part of the contact domain 

Figure 8. Contour maps of contact stresses distributed on the ball surface 
 

  
  (a) Ball and inner ring                   (b) Ball and outer ring 

Figure 9. Contact pressure comparison between FEM software and Hertz theory 

 



-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

-8

-6

-4

-2

0

2

4

6

8

Upper domain of
the contacted roller

Contact stress
(MPa)

A
xi

al
 d

im
e
n
si

o
n
 o

f 
th

e
 r

o
lle

r 
(m

m
)

Circumferential dimension (contact width) of the roller (mm)

0.000

93.75

187.5

281.3

375.0

468.8

562.5

656.3

750.0

  

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

-8

-6

-4

-2

0

2

4

6

8

Lower domain of
the contacted roller

Contact stress
(MPa)

A
xi

al
 d

im
en

si
o
n 

o
f 

th
e 

ro
lle

r 
(m

m
)

Circumferential dimension (contact width) of the roller (mm)

0.000

118.8

237.5

356.3

475.0

593.8

712.5

831.3

950.0

 
(a) The upper part of the contact domain         (b) The lower part of the contact 

domain 

Figure 10. Contour maps of contact stresses distributed on the roller surface 

 

          
(a) The roller before crowned       (b) The roller after crowned 

Figure 11. Crowning on the two ends of the roller with Johson-Gohar curve 
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(a) The upper part of the contact domain        (b) The lower part of the contact domain 

Figure 12. Contour maps of contact stresses distributed on the roller surface 

 

 
Figure 13. Comparison of radial rigidity of the ball bearing 

 

5.2 Radial rigidity of the ball bearing 

 

In the case of the ball bearings, since Hertz theory can be used to calculate radial rigidity of the 



bearings, a comparison of the radial rigidity is made for the ball bearing between the developed 

FEM software and Hertz theory in Fig. 13. From Fig. 13, it is found that the FEM results are a 

little greater than the Hertz theory results. An experimental research is scheduled to identify 

which method is more reasonable and accurately in the near future.  

6. Conclusions 

A mathematical model and numeric method are presented in this paper in order to conduct 

contact analysis of rolling bearings based on the principle of the mathematical programming 

method. Three-dimensional, finite element method is introduced to calculate deformation 

influence coefficients and gaps of the assumed pairs of contact points between contact surfaces. 

Special software is developed to realize the procedures of the contact analysis. With the help of 

the special software, loaded bearing contact analyses are conducted for a deep groove ball 

bearing and a cylindrical roller bearing. Calculation results shows that the special software can 

calculate more reasonable and accurate contact pressure distribution of the rolling bearings than 

the commercial software SolidWorks and some other methods. The maximum contact pressure 

and radial contact rigidity of the ball bearing are also analyzed with Hertz theory. It is found 

that the results obtained by Hertz theory are similar to the results obtained by the special 

software, but they are not equal exactly. An experimental research is scheduled to identify which 

method is more reasonable and accurately in the near future. 
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