Nanovoids induced homogeneous superplastic in metallic metal *Bida Zhu¹, †Minsheng Huang^{1, 2} and Zhenhuan Li^{1, 2}

¹ Department of Mechanics, Huazhong University of Science and Technology, Wuhan, 430074, China

² Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan, 430074, China

*Presenting author: D201477393@hust.edu.cn

[†]Corresponding author: mshuang@hust.edu.cn

Abstract

In this paper, we simulate the tension properties of $Cu_{50}Zr_{50}$ metallic glass films with regularly distributed nanovoids by molecular dynamics. A deformation mode transition from localized shear banding to homogeneous flow was found in $Cu_{50}Zr_{50}$ metallic glass with a critical void volume in range of 2.5% and 5%. Further analysis on atomic scale reveals that this failure mode change is realized by multiple shear banding induced by energetic and liquid-like void surface atoms. The simulation results suggested a new strategy on the fabrication of ductile metallic glasses by introducing nanovoids with appropriate volume fraction and average size

Keywords: Metallic metal, Molecular dynamic simulation; Tensile behavior; Shear localization