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Abstract 

The nonlinear vibrations of the moored floating structures under horizontal sinusoidal 

excitations are studied in three dimensions. Four mooring lines are connected to the floating 

structure and fixed to the sea bed. The nonlinear equations of motions of the mooring lines are 

formulated using the cable elements formulated based on the extended Hamilton principle. 

The floating structure is considered as a rigid body with six degrees of freedom. Then the 

equations of motion of the floating structure and mooring lines are formulated through their 

connection conditions. In the last, the equations of motion of the whole structure are analyzed 

numerically. The influences of different sag-to-span ratio and inclined angle of the mooring 

cables on the responses of the floating structure are studied. 
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Introduction 

The moored floating structures can find their applications in ocean engineering to exploit 

marine resources such as oil, gas and minerals. It consists of the floating platform and 

mooring cables. If the floating body is subjected to external excitations, the movements of 

floating body can induce the geometry change of mooring lines. The geometric nonlinearity 

of the mooring lines plays an important role in the dynamical analysis due to their flexibility. 

Therefore accurate modeling of mooring cables is necessary for the vibration analysis of the 

whole structure. Some researches simplified the mooring lines as a linear spring [1, 2, 3] to 

support the floating body for convenient and efficient analysis. The constant stiffness of the 

spring is derived and added to the linear stiffness matrix of the floating body. The mooring 

lines were also modeled as nonlinear spring [4, 5, 6, 7]. The restoring forces from mooring 

lines are determined on the static analysis of catenary cables with the assumption that the 

floating body moves slowly. However, the above two methods cannot reflect the real behavior 

of the cable. Therefore, fully modeling of cable is required. The lumped mass model [8, 9, 10, 

11] or the bar element [12, 13] was used for the vibration analysis of mooring lines. The 

cables were modeled using the finite element method based on the principle of minimum 

energy including strain energy due to bending and torsion [14, 15], in which the equations of 

motions of the mooring lines and those of floating body were solved separately and iteratively. 

 

In this paper, the nonlinear vibrations of three-dimensional floating structure and mooring 

system under the horizontal sinusoidal excitations are studied. The nonlinear equations of 

motions of the mooring lines are formulated using the 3D cable elements formulated based on 

the extended Hamilton principle [16, 17]. The cable element is simplified as a flexible tension 

member without considering its bending and torsion stiffness because of the extremely large 

ratio of length over cross-section dimension. The floating body is considered as a rigid body 

with six degrees of freedom, i.e., three translational displacements and three rotational 

displacements. The equations of motions of both the floating body and mooring system are 

formulated through their connection conditions and they are solved numerically as a whole.     



Problem Statement 

Consider the floating structure and mooring system as shown in Fig. 1. It consists of the 

floating body and four catenary mooring lines C1, C2, C3 and C4. The floating body and 

mooring lines are connected through four nodes A, B, C and D. O is the centroid of the 

floating body. The other ends of the mooring lines are fixed on the sea bed. wa, wb and wc are 

the length, height and width of the floating body, respectively; h is the depth of sea; hs is the 

submerged height of the floating body in the sea in static state. The top view and side view of 

the three-dimensional floating system are shown in Fig. 2. The mooring lines C1, C2 and C3, 

C4 are symmetric about the y-axis in the plane x1Oy and x2Oy, respectively. θ, l and d are the 

inclined angle, inclined length and initial sag of the mooring line, respectively. wl is the 

distance between the nodes A and B.  
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Figure 1. Configuration of the three-dimensional floating system 
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Figure 2. (a) Top view (b) Side view of the three-dimensional floating system 

 

The exact catenary profile of the mooring cables in static state is governed by the initial 

pretension and self-weight of cable. The catenary profile of cable is needed for given sag-to-

span ratio d/l.  

 

The submerged height hs of the floating body in static state is obtained as follows referring to 

Fig. 3. FA1, FA2, FA3, FB1, FB2, FB3, FC1, FC2, FC3, FD1, FD2, FD3 are the components of cable 

pretensions at nodes A, B, C, and D in x, y, z axes, respectively, and 

 2 2 2 2f A B C DF F F F F Mg       (1) 

where M is the mass of the floating body; Ff is the buoyancy of the floating body in the sea 

and expressed by f s s a cF gh w w , in which s  is the density of sea water.  
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Figure 3. Static equilibrium of the floating body 

Nonlinear Dynamical Analysis of the Moored Floating System  

The equations of motions of the mooring lines and the floating body are derived individually 

first and then they are assembled together through their connection conditions. 

Finite Element Formulation for the Dynamics of Cable 

The equations of motion of the mooring cables are formulated with finite element. The cable 

element is formulated based on the extended Hamilton principle in the following. 

 

Consider the differential cable element in dynamical state as shown in Fig.4. Let ds  and ds  

denote the length of cable element in static state and dynamical state, respectively. u , v  and 

w  are the dynamical displacements in x , y  and z  directions, respectively. Then 
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Figure 4. Differential cable element in dynamical state 

 

Retaining the terms up to second order, the axial strain of cable is given by 

      
2 2 21 1 1

2 2 2

ds ds
x u y v u v w

ds



        


     (3) 

where   s    . Taking the derivatives of   with respect to u , v  and w , respectively, it 

gives  
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From which we have the following variation of  , 

    x u u y v v w w                 (5) 

The variation of potential energy relative to the unstressed state is given by 

  
0

L

T EA ds   Π   (6) 

The variation of kinetic energy is given by 

  
0

0
L

K A u u v v w w ds           (7) 

The variation of virtual work associated with gravity and damping force is given by 

  1 2 3 1 2 3
0

L

W Ag v f u f v f w c u u c v v c w w ds                 (8) 

where 1f , 2f  and 3f  are the external distributed loads per unit length along x , y  and z   

directions, respectively; 1c  , 2c  and 3c  are the damping coefficient per unit length along  x , 

y  and z  directions, respectively. 

Substituting Eq. (5) into Eq. (6), the variation of potential energy can be expressed as 

         
0

 
L

EA u x u v y v w w T u x u v y v w w ds                                    Π  (9) 

With Eqs. (7)-(9) and applying the static equilibrium equations of cable element into 

 
2

1

0
t

t
K W dt     Π , we have  

  
2

1

0
t

t
K W dt     Π   (10) 

where   is the potential energy relative to static equilibrium state and W   is the virtual work 

done by the external forces from static equilibrium state and done by the damping forces.  

 

The variation of potential energy relative to the static state is expressed as 

       
0

L

EA u x u v y v w w T u u v v w w ds                            Π   (11) 

and the variation of the virtual work done from the state of initial profile is expressed as 

  1 2 3 1 2 3
0

L

W f u f v f w c u u c v v c w w ds               (12) 

Let  ,,
T

e e e e eewu v u N d  and  , ,, , ,i
T

e i i j j ju v u vw wd  for element e , where i  and j  

are two node numbers of element e  and e
d  is the displacement vector of element e  in local 

coordinate system O-x1yz1 or O-x2yz2 of the cable.   

 

The linear shape function of element e  is given as follows, 
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where 1 1 / eN s l  , 2 / eN s l  and el  is the length of element e .  Denoting /e ed dsD N  

and   , ,0
Te x y x  for element e , the strain of element e  or e  can be expressed as 
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where 1

1

2

e eT e eT eT e B x D d D D . The variation of strain e  is obtained to be 
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where 2

e eT e eT eT e B x D d D D . Therefore, the variation of the potential energy is given by  
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where eN  is the total number of elements. The stiffness matrix of element e  is then obtained 

to be  

 2 1
0

ele T e eT eEA T ds   k B B D D   (17) 

The variation of kinetic energy of the whole system is given by 
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Thus the mass matrix of element e  is obtained to be 
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The lumped mass matrix e

lm  of element e  is  
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In the following numerical analysis, the lumped mass matrix of element e  is used for 

simplicity. 

 

The equations of motion for the element e in local coordinate systems O-x1yz1 and O-x2yz2 are 

given as follows. 

 ( )e e e e e e e e

lm   d c d k d d f   (21) 

where e
c  and e

f  are the damping matrix and force vector of element e . 

  

Denote  , ,, , ,i
T

e i i j j

g g g g

j

g g gu wv u wvd for element e , which is the displacement vector of 

element e  in global coordinate system O-xyz of the cable. Using the transformation matrix T  

between the local and global coordinate systems and the relationship e e

gd Τd , Eq. (21) 

becomes 

 ( )e e e e e e e e

g g g g g g g g  M d C d Κ d d F   (22) 

where e T e

g lM T M T , e T e

g lC T C T , e T e

g lK T K T , and e T e

g lF T F , which are the stiffness 

matrix, damping matrix, stiffness matrix and force vector of element e  in global coordinate 

system O-xyz of the cable.  

 

The equations of motion of the mooring cables are then formulated as follows using the above 

cable element when   is replaced by s  . 

 ( ) 0m m m m m m m  M U C U Κ U U   (23) 

where the subscript m denotes the number of mooring lines and 1, 2, 3  m   or 4 for this 

structure. mU  denotes the global displacement vector of the mth mooring cable;  m mK U  

denotes the global stiffness matrix of the mth mooring cable; mM  denotes the global mass 

matrix of the mth mooring cable; mC  denotes the global damping matrix of the mth mooring 

cable; and mF  denotes the force vector of the mth mooring cable.  

 

Dynamics of the Floating Body 

The floating body is considered as a rigid body with six degrees of freedom, which are 

displacements uf, vf, wf along x, y, z axes and rotations α, β, γ in xOy, xOz, yOz planes, 

respectively. The equations of motion of the floating body are given as follows referring to 

Fig. 5. 
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Figure 5. Forces applied on floating body 
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where Fx(t) is the external force applied on floating body in x axis;  Jz, Jy and Jx are the 

moment of inertia of the floating body in xOy, xOz and yOz planes, respectively; FAx, FAy, FAz, 

FBx, FBy, FBz, FCx, FCy, FCz, FDx, FDy, FDz are the dynamical tensions of the cable at node A, B, C, 

and D in x, y, z axes, respectively, which are induced by the displacements of the elements of 

mooring lines connected to floating body; Fb, Fb1 and Fb2 are the dynamical buoyancy of the 

floating body due to the change of submerged volume of the floating body, which are 

expressed as 
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Connection Conditions 

In order to formulate the equations of motion of the mooring cables and the floating body as a 

whole, the connection conditions between the mooring lines and floating body are needed. 

Their relationships are   

 , ,
2 2 2 2 2 2

 v  b c a c a b
A A A

w w w w w w
u u v w w                (31) 
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2 2 2 2 2 2

 v  b c a c a b
B B B

w w w w w w
u u v w w                (32) 
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 v  b c a c a b
C C C

w w w w w w
u u v w w                (33) 

 , ,
2 2 2 2 2 2

 v  b c a c a b
D D D

w w w w w w
u u v w w                (34) 

where uA, vA, wA, uB, vB, wB, uC, vC, wC, uD, vD, wD are the displacements of the nodes A, B, C, 

and D in x, y, z axes, respectively. Then the equations of motion about the nodes A, B, C and 

D in Eq. (23) are removed and replaced by Eqs. (24)-(29) using the connections conditions 

given by Eqs. (31)-(34). The variables of displacements related to nodes A, B, C and D in 

other equations of motion in Eq. (23) are also expressed by Eqs. (31)-(34). Thus the final 

equations of motion of the whole system are obtained to be 

 ( )  MU CU Κ U U F   (35) 

where U is the global displacement vector of the whole system; K(U) is the global stiffness 

matrix of the whole system; C is the Rayleigh damping matrix. 

 

Numerical example 

Consider the mooring cables and floating body with their parameter values shown in Table 1 

and Table 2, respectively. The density of sea water is 31.025 10s    kg/m
3
. 

  

Table 1. Properties of mooring cables 

 Parameter                                                 Value 

 

Young’s modulus E (N/m
2
)                      210

11 

Diameter D (m)                                            0.1  

Mass density    (kg/m
3
)                          810

3 

Damping ratio                                           0.03 

Sea depth h  (m)                                          100 

Inclined angle   (degree)                            50 

Sag-to-span ratio /d l                                 1/60 

 

 

 

 



Table 2. Properties of floating body 

 Parameter                                                 Value 

 

Length aw  (m)                                             26
 

Height bw  (m)                                              5  

Width cw  (m)                                              10
 

Mass M (kg)                                           1.210
5
 

 

The submerged height of the floating body in static state is calculated with Eq. (1) to be 

0.896sh  m, Consider that the floating body is subjected to the sinusoidal force 

( ) Asin( )xF t t  with amplitude A being 10
5 

N and 1.6   rad/s. Each mooring line is 

divided into 11 elements. The system starts to move from static state. The time history of the 

responses of the floating body and the maximum cable tensile force is shown in Fig. 6. 
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Figure 6. Time history of (a) Displacement along x-axis (b) Displacement along y-axis (c) 

Rotational angle in xOy plane (d) Maximum tensile force in cable 

 with / 1/ 60d l   and 50    

 

When the initial inclined angle equals 50º, the response amplitudes of the floating body and 

the maximum tensile force in the cable at steady state are presented in Fig. 7 for different sag-

to-span ratios of cable. It is seen that the displacements along x-axis, y-axis and the rotational 

angle in xOy plane of floating body decreases obviously as the sag-to-span ratio decreases 



from 1/45 to 1/80. This means that the displacements along x-axis, y-axis and the rotational 

angle in xOy plane of floating body are much influenced by the sag-to-span ratio of the cable. 

The maximum cable tensile force decreases as the sag-to-span ratio decreases from 1/45 to 

1/60. After that, it increases as the sag-to-span ratio decreases from 1/60 to 1/80. It means that 

the maximum cable tensile force is much influenced by the sag-to-span ratio of the cable. 
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Figure 7. Amplitude of (a) Displacement along x-axis (b) Displacement along y-axis (c) 

Rotational angle in xOy plane (d) Maximum tensile force in cable  

at steady state for different sag-to-span ratios of cable with 50    

 

When the sag-to-span ratio equals 1/60, the response amplitudes of the floating body and the 

maximum tensile force in the cable at steady state are presented in Fig. 8 for different initial 

inclined angles of cable. It is seen that the displacements along x-axis, y-axis and the 

rotational angle in xOy plane of floating body decreases obviously as the inclined angle 

increases from 40º to 54º. This means that the displacements in x-axis, y-axis and the 

rotational angle in xOy plane of floating body are much influenced by the initial inclined 

angle of the cable. The maximum cable tensile force decreases as the inclined angle increases 

from 40º to 50º. After that, it increases as the inclined angle increases from 50º to 54º. It 

means that the maximum cable tensile force is much influenced by the inclined angle of the 

cable. 
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Figure 8. Amplitude of (a) Displacement along x-axis (b) Displacement along y-axis (c) 

Rotational angle in xOy plane (d) Maximum tensile force in cable  

at steady state for different initial inclined angle of cable with / 1/ 60d l   

 

Conclusions 

The nonlinear vibrations of the three-dimensional floating structure moored by cables are 

analyzed. The floating body is modeled as a rigid body with six degrees of freedom. The 

mooring cables are modeled with the 3D nonlinear cable elements which are formulated with 

the extended Hamilton principle. The connection conditions between the mooring cables and 

the floating platform are introduced and hence the nonlinear equations of motions of both the 

mooring cables and floating platform are formulated as a whole through these connection 

conditions. Then the nonlinear equations of motion of the system under horizontal sinusoidal 

excitations are solved numerically as a whole. The influence of the mooring cables on the 

responses of the floating body and the maximum cable tensile force are discussed for different 

values of initial sag-to-span ratio or initial inclined angle of the mooring cables. It is seen 

from the numerical results that the initial sag-to-span ratio and the initial inclined angle of the 

mooring cables at static state have much influence on the dynamical displacements and 

rotations of the floating platform and the cable tensile forces. 
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