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Abstract 

Flow through two-dimensional rectangular micro-channel with patterned slip on the walls under 

the low-Reynolds number limit ( 1<<Re ) is studied using boundary element method (BEM). We 

assume that the pattern of the slip on the upper and the lower walls maintain a phase difference 

(i.e., out-phase configuration). We considered two subcases of out-phase patterned slip, namely 

large and fine depending on the characteristic length of the patterning. In order to obtain a deep 

insight of flow mechanics, we investigated the streamlines, velocity profiles, shear stress, and 

pressure gradients with varying slip-length ( sl ). 
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Introduction 

In order to model the flow of a viscous incompressible fluid over solid boundaries, proper 

understanding about the boundary conditions at the interface of solid and liquid are required. The 

most applicable boundary condition is the no-slip condition which generally state that the fluid 

velocity at the wall is equal to the wall velocity. The no-slip boundary condition does not work in 

certain occasions like flows over hydrophobic surfaces, problems involving multiple interfaces, 

and flow of rarefied fluids. In the past, several researchers have proposed various models to 

correctly defines the interaction between a solid wall and a liquid. A detailed discussion about the 

slip boundary condition can be found in [1]. 

 

The range of slip-length is affected by several factors. A perfect slip (large slip) can be observed 

in situations where the nanobubbles are trapped over hydrophobic surfaces. In most of the micro- 

fluidic applications, there is a high possibility of encountering the irregular boundaries. In order 

to handle such complex boundary conditions, attempting analytical solution might be impossible. 

In that case one has to rely on numerical solution. 

 

There are several domain discretization techniques (such as finite difference method (FDM), 

finite element method (FEM), and finite volume method (FVM)) available in literature to solve 

such fluid flow problems involving complex boundaries. In case of linear operators another 

technique available in literature which is based on the integral equation method known as 

boundary element method (BEM). The major advantage of this technique over the others is that 

the dimension of the solution domain is reduced by order one, which results in saving 

computational resources. 



 

Understanding flow through rectangular micro-channels is useful in designing and optimization 

of lab on chips systems. At the micro, and nano length scales, the ability to fabricate patterns and 

structures has produced a board area of scientific research. The interaction between solid wall and 

liquid defines slip or no-slip conditions on a wall. The hydrophilic and hydrophobic surfaces are 

characterized by no-slip and partial slip boundary conditions. In order to design hydrophobic/ 

hydrophilic surfaces, various investigations on chemical modification of surfaces have been done 

([2] [3]). In this connection, surfaces coated with alternate slip and no-slip are important in 

reducing drag [4]. The ability to manipulate the flow to enhance the mixing in the low-Reynolds 

number limit is another very interesting phenomena of the surfaces coated with alternate slip and 

no-slip boundary conditions. In [1], the idea of in-phase patterned slip has been used, while 

studying Stokes flow in a two-dimensional rectangular micro-channels. In this study, we extend 

the work of [1] by considering the out-phase configuration of patterned slip in rectangular 

micro-channels. 

 

Mathematical Formulation 

Let us consider a steady, two-dimensional,viscous incompressible Newtonian flow at low 

Reynolds number that is governed by Stokes equation together with the continuity equation given 

by the respective non-dimensional form,  
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where the non dimesionalization is done using the characteristic variables, 
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Eliminating the pressure term from Eq. (1) while introducing stream function, Stokes equation 

can be reduced to a biharmonic equation which is given by, 

 

                                 0.=4  (2) 

 

In order to solve Eq. (2) using boundary element method, the biharmonic equation is rewritten as 

a coupled system of Poisson and Laplace equation in terms of stream function-vorticity variables, 

 

 0.=  ,= 22    (3) 

 

In order to solve Eq. (3) we use direct biharmonic boundary integral equation methods (BBIE). 

Of course one may recall boundary integral formulation based on velocity-traction variables [15]. 

However, here we restrict to stream function-vorticity formulation without debating much on the 

relative advantages and disadvantages. In the literature, several authors have reviewed the BBIE 

methods ([5]-[13]) in significant detail. Therefore, in this study we present this method in brief.  

Let us denote a general field point by ),( YXp  and an integration point on the boundary by 

),( 00 YXq , so that p  and q . Let 
LG  and 

BG  be the fundamental solutions 



corresponding to Laplacian and biharmonic operators which satisfies |)(|=2 pqGL   , and 

|)(|=4 pqGB   , where   is the dirac delta function and ||= qplogGL  , and 

1)||(|=| 2  qplogqpGB  [14]. 

 

Application of Green’s second identity to Eq. (3) gives rise to the following pair of integral 

equations at a general field point p , 
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where, )( p  is defined by,  
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We discretized the boundary   into N constant elements j  containing the mid-element 

boundary nodes jq  ( =1,2,..., )j N . We use piecewise constant functions j , 
n

j




, j , and 

n

j




, for =1,2,...,j N  to approximate the values of  , 

n


,  , and 

n


 over each element.  

Applying the discretized form of Eqs. (4) and (5) at the mid-point iiqp   ( =1,2,..., )i N  of 

each element, gives a system of linear equations, 
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where the coefficients ijA , ijB , ijC , and ijD  are given by,  
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where ij  denotes the Kronecker delta function. In this paper, we use the analytical expression of 

the above integrals derived by [5]. On solving Eqs. (7)  and (8) , one obtain the unknown set of 

boundary variables at each node ,jjq   =1,2,...,j N . Subsequently, one can obtain the values 

of   and   at a general field point p  by solving the Eqs. (7)  and (8)  for  2=)( p . 

 

Once the values of stream function ( ) and vorticity ( ) are known inside the domain, one can 

compute the velocity profiles and pressure gradients by taking their appropriate spatial 

derivatives, and also evaluate wall shear stress. please refer [1] for details.  

 

Results and Discussion 

In this study, we have considered out-phase patterned slip in rectangular micro-channels (see 

Figs. 1 and 8). Based on the characteristic length of the patterning, we further considered two 

subcases namely large and fine patterns. When the characteristic length of the pattering ( a ) is 

bigger than the width of the channel, we have large patterning, while fine pattering arises when 

the characteristic length of pattering ( a ) is smaller than the width of the channel. Depending on 

the location of the slip or no-slip surface, the boundary conditions are used as follows, 
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where sl  represents the dimensionless slip length. 

In the present study, we use 240 constant elements to discertize the boundary in a 

counter-clockwise sense.  

 

Out-phase patterned slip 

Here, we consider out-phase configuration of slip-patterning in rectangular micro-channels (see 

Figs. 1 and 8). The length and width of the channels are 10 and 1 units respectively. The no-slip 

and slip boundary conditions on the channel wall are characterized by black and grey line 

segments on the wall. The value of periodicity ( a ) is same for both the no-slip and slip regime. 

2.5=a  represents the large patterning, while 0.5=a  corresponds to fine patterning. To ignore 

the effects of inlet and outlet in our discussion we present the results for a certain part of the 

channel. The two subcases of out-phase slip-patterning (large and fine) have been discussed 

below. 

 

 



Large Patterning 

In this case, the periodicity of patterning ( a ) is taken as 2.5 (refer Fig. 1). Fig. 2 shows the 

contour plots of the streamlines for different values of sl  ranging from 0.1 to 10. It is observed 

that the streamline profiles look qualitatively similar for different values of sl . 

 

       
 

Figure 1. Schematic of the rectangular channel with out-phase large patterned slip. Region 

I denotes the extension, which is introduced to match the inlet boundary condition. Region 

II is the actual channel through which the flow is desired. 

  

 
 

Figure 2. Contour plots of the streamlines for out-phase large patterned slip in rectangular 

channels with different values of 1 0.5, 0.1,=sl  and 10 . 

 

 

 



 

The variation of the horizontal (U ) and vertical (V ) velocities with X  at 0.5=Y  are shown in 

Fig. 3. The U  velocity has significant dependency on the slip-length : with decreasing sl the 

value of U  at 0.5=Y  becomes almost constant (similar to the case where complete no-slip 

boundary condition is applied on both the walls). On the other hand with increasing sl , the 

overall center-line velocity decreases. This fact can be understood on the basis of principle of 

mass conservation. Interestingly, the maximum U  for a particular sl  is attained at the points 

where a change in boundary conditions take place, i.e., at 2.5= X , 0  and 2.5 . The variation 

of V  with X  at 0.5=Y  is also a function of sl  and its maximum value increases as sl  

increases. Moreover the peaks in V  are obtained where there is a change of boundary 
conditions. Similar variation has been observed in the V  velocity with X  at other values of Y . 

  

Figure 3.  Variation of the horizontal (U ) and vertical (V ) velocities with X  at 0.5=Y  

for varying slip-length sl  from 0.1 to 10. 

 

In order to gain a proper understanding of the effect of patterns on the walls, U  is plotted 

against X  for 0.05=Y  and 0.95 , see Fig. 4. It is observed that in the no-slip regime, the effect 

of the slip-length is not that prominent, and thus U  does not seem to vary much with sl  as 

opposed to the slip-regime where a prominent variation with sl  is noted. In fact when sl  is 

significantly large then the value of U  approaches 1.5, which is theoretically the maximum 

velocity possible for a channel flow, with the particular inlet conditions that we have utilized. 

Furthermore, for a particular value of sl , the U  velocity profiles presented in Figs. 4 (a) and 4 

(b) are completely out of phase. This is simply because of the fact that the patterning is out of 

phase, and near the boundaries the flow profiles closely replicate the boundary conditions 

implemented at the walls. 

 

(a) U vs X (b) V vs X 



 
Figure 4. Variation of the horizontal velocity (U ) with X  at two different values of Y  for 

varying slip length, sl , from 0.1 to 10. 

 

The variation of U with ,Y  presented in Fig. 5, shows that at the no-slip end, the U  velocity 

tends to zero and in the slip regime the horizontal velocity varies according to the slip-length. 

Another interesting fact is that, in Figs. 5 (a) and 5 (b), there exist a particular value of Y  for 

which the U  velocity remains the same with varying sl . 

  
 

 
Figure 5. Variation of the horizontal velocity (U ) with Y  at two different values of X  for 

varying slip length, sl , from 0.1 to 10. 

 

In order to understand the effect of pressure drop, the variation of pressure gradients (PG) in 

X-direction against the horizontal distance X  at the channel center-line with varying sl  is 

plotted in Fig. 6. Dips in the pressure gradient ( PG ) profile are observed at the places where the 

boundary condition changes. Also, when the slip-length is very low ( 0.1=sl  almost represents 

the no-slip condition) the value of PG  tends to a constant value, i.e., the amplitude of variation 

of PG  is reduced. With increasing slip-length there is a net upward shift (tending towards zero) 

of the PG  profile which is justified because, as the slip-length increases there is less resistance 

to the flow and thus a smaller pressure gradient would be sufficient to drive the flow. 

(b)  X=1.7 (a)  X=-1.7 

(b) Y=0.95 (a) Y=0.05 



   

 
Figure 6. Plot of the pressure gradient ( PG ) in the X  direction with X  at 0.5=Y  for 

varying sl , from 0.1 to 10. 

   

The shear stress on the top wall ( 1=Y ) is plotted with X  in Fig. 7. In the slip regime for large 

value of slip-length ( sl =10) shear stress vanishes on the wall, while in the no-slip regime there is 

a small variation in the shear stress profiles. 

 

         
Figure 7. Plot of the shear stress with X  at 1=Y  for varying sl , from 0.1 to 10. 

   

 

Fine Patterning 

In this case 0.5=a  as shown in Fig. 8. It is observed from Fig. 9 that the streamline profiles 

remain qualitatively same with varying sl . 



       
   

Figure 8. Schematic of the rectangular channel with out-phase fine patterned slip. Region I 

denotes the extension, which is introduced to match the inlet boundary condition. Region II 

is the actual channel through which the flow is desired. 
  

 
 

Figure 9. Contour plots of streamline for out-phase fine patterned slip in rectangular 

micro-channels with different values of 1 0.5, 0.1,=sl  and 10 .  

 

The U  and V  velocities are plotted with X  in Fig. 10. The U  velocity has greater 

dependency over the slip-length sl . As opposed to the earlier case of out-phase large patterned 

slip, the amplitude of variation of U  is very marginal. This is mainly because of the fact that the 

characteristic length of patterning is very small which does not let the flow develop as in the 

previous case. Also, with increase in sl  the center-line U  velocity decreases. This fact can be 

  

  

  

 

 



understood on the basis of principle of mass conservation. From Fig. 10 (b) it is recognized that 

the variation in V  velocity with X  is quite similar to the previous case of out-phase large 

patterned slip but there is a remarkable difference in the magnitude of the variation. 
  

Figure 10. Variation of the horizontal (U ) and vertical (V ) velocities with X  at 0.5=Y  

for different values of sl , ranging from 0.1 to 10. 

 

To understand the effect of the boundaries, the variation of U  with X  at 0.05=Y  and 0.95  

is shown in Fig. 11. In the slip-regime a prominent variation with sl  is observed, more the 

slip-length more is the U  velocity. Interestingly, when sl  is significantly large, in contrary to 

the case of large out-phase slip, the value of U  does not approach 1.5. The reason for this is that 

because of the small characteristic length a  the flow does not develop fully. In Fig. 11, it can be 

clearly seen that the U  velocity profile at 0.05=Y  and 0.95=Y  are completely out of phase 

for varying slip length 0.1,0.5,1=sl , and 10 . 

  

 
Figure 11. Variation of the horizontal velocity (U ) with X  at two different values of Y  

for varying slip length, sl , from 0.1 to 10. 

 

The U  velocity with Y  at two different values of X  is plotted in Fig. 12. Similar variation in 

U  velocity is observed as in the case of out-phase large patterning, but there is marked 

difference in U  velocity close to the boundary as there is no prominent variation in this 

(a) Y=0.05 (b) Y=0.95 

(a)  U vs X (b) V vs X 



component with sl . 

 

 
Figure 12. Variation of the horizontal velocity (U ) with Y  at two different values of X  

for varying slip-length sl , from 0.1 to 10. 

 

To clarify the effect of pressure, the variation of the pressure gradient ( PG ) in the X  direction 

with X  is plotted for 0.5=Y  (Fig. 13). Due to the small characteristic length of patterning the 

pressure gradient profile deviates and fluctuates with a smaller amplitude as compared to the 

previous case. 

 
Figure 13. Plot of the pressure gradient ( PG ) in the X  direction with X  at 0.5=Y  for 

varying sl  from 0.1 to 10. 

   

The variation of the shear stress on the top wall as shown in Fig. 14 is quite similar to the 

previous case. Due to the small characteristic length of the patterning, shear stress profiles 

deviates from the previous case. 

 

(a) X=-1.7 (b) X=1.7 



    
Figure 14. Plot of the shear stress with X  at 1=Y  for varying sl  from 0.1 to 10. 

    

Conclusions 

In this study, flow in out-phase slip-patterned rectangular micro-channels is analyzed using  

boundary element method (BEM). Two subcases of out-phase slip-patterning namely, large and 

fine have been discussed. For each of the mentioned cases, the streamline profiles for different 

values of slip length have been investigated. It was understood that the U and V velocities varies 

significantly with slip length. It is also observed that the pressure gradient (PG) and wall shear 

stress have greater dependency over slip-length. When the slip length is very high, it was 

observed that there is practically no resistance to the flow and therefore shear stress vanishes on 

the wall. 

 

It is found that the analytical solution is almost not possible for such configuration of boundary 

conditions. In order to handle such complexities in boundary conditions the presented boundary 

element solution is very useful. 
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