

Building Language Models with Fuzzy Weights

*Tsan-Jung He¹, †Shie-Jue Lee2, and Chih-Hung Wu3

1Department of Electrical Engineering National Sun Yat-Sen University, Kaohsiung, Taiwan.
2Department of Electrical Engineering National Sun Yat-Sen University, Kaohsiung, Taiwan
3Department of Electrical Engineering National University of Kaohsiung, Kaohsiung, Taiwan

*Presenting author: zlhe@water.ee.nsysu.edu.tw

†Corresponding author: leesj@mail.ee.nsysu.edu.tw

Abstract

Word2Vec is a recently developed tool for building neural network language models. The

purpose of this work is to propose an improvement to Word2Vec by adding fuzzy weights

related to the distances in the context to use more information than the way adopted in the

original linear bag-of-word structure. In Word2Vec, the same weights are given regardless of

different distances between words. We consider that word distances in the context bear certain

semantic sense which can be exploited to reinforce connections more effectively for the

network model. In order to formalize the influence of different distances in the context, we

adopt Gaussian functions to represent fuzzy weights which take part in the training of the

connections of network. Various experiments show that our proposed improvement can result

in better language models than Word2Vec.

Keywords: word2vec, skip-gram, fuzzy weights, neural network language model, word

embedding, natural language processing (NLP).

I. Introduction

In order to deal with many tasks like text processing and near-duplicate detecting easily, an

appropriate method to select features is extremely important. In these tasks, one of the most

employed method is Term Frequency-Inverse Document Frequency (TF-IDF) [1]-[3] which

represents documents as a vector by using word counts in a corpus. However, it would be less

efficient when a corpus becomes larger. Worst of all, different words in a corpus are

considered as independent objects. The limit of this type of representation is that similar

words or synonyms are not taken into account. In the real world, people may use different

words to represent the same or similar concepts. When two similar documents contain some

synonyms, calculating the similarity between these documents would encounter difficulties.

Therefore, if we want to do the calculation in a semantic way, word representation is certainly

an issue.

The simplest way of word representation is the one-hot representation [4][5] which is a N1

vector to map different words in a document. The vector is as large in size as the vocabulary

which is the collection of all different words in a corpus of documents. All the word vectors

form a matrix. In the matrix, an entry is 1 if the word appears in the underlying document, and

is 0 otherwise. However, this type of representation has the problem of the curse of

dimensionality, and it is also difficult to express the relationship among different words.

Recent researches based on Mikolov et al. [6][7] proposed the Word2Vec model, employed in

Neural-network Language Models [8], which transfers the one-hot representation into small

dense vectors. Words are expressed as low-dimensional distributed vectors. Word2Vec is also

an efficient method to capture complex semantics and word relationships, and can be used to

find synonymous words by considering positions in the vector space. Therefore, Word2Vec

has been widely applied in many Natural Language Processing (NLP) tasks such as Part-Of-

Speech (POS) Tagging and text classification [9]-[11].

To train a network language model, Word2Vec adopts a linear bag-of-words training. During

the training phase, documents are divided into many word sets, usually sentences, and then

words in the context windows are selected as targets and surroundings to reinforce the

connections. If two words occur simultaneously more frequently, the relationship between

these words is more increasingly enhanced. However, all the involved words are treated of

equal importance and the information of their positions is not properly exploited in the

training phase. In this paper, we overcome this disadvantage by integrating the weights

induced from the positions of contextual words in the context window into the Word2Vec

training architecture. Intuitively, words nearer to the target in the context window should have

a closer relationship to the target and should be more important to the target. So we take

advantage of the distance information to improve the semantic accuracy of the resulting

language model. We express the importance of words in terms of fuzzy weights. To formalize

the influence of different distances in the context, we adopt Gaussian functions to represent

fuzzy weights which take part in the training of the connections of network. Various

experiments show that our proposed improvement can result in better language models than

Word2Vec.

The rest of this paper is organized as follows. Section II briefly introduce the Word2Vec

neural network architecture. Section III describes our proposed method to integrate fuzzy

weights into the Word2Vec algorithm. In Section IV, we present some experimental results.

Finally, a conclusion is given in Section V.

II. Related Work

Word2Vec is a tool released by Google in 2013 [6][7]. It provides a simple and high-quality

method to train the representation of words and is used in many natural language processing

(NLP) applications. In Word2Vec, it has two main training architectures: continuous bag-of-

word (CBOW) and skip-gram (SG). The difference between the two is that CBOW predicts

the current word based on the context while SG predicts the surrounding words by the current

word.

Training data can rely on the unlabeled text data as the input [12], and the model produces the

vectors of the words as the output. The vocabulary is first constructed from the input and the

vector representation of words is learned. SG and CBOW work the same in the early steps of

the training phase, picking a word as a center and selecting contextual words according to the

window size. Then CBOW takes contexts as input and SG takes a center word to infer

contexts, as presented in Fig 1. After training, each word is represented as a vector in the

vector space. These word vectors can then be used as features in the succeeding classification

applications.

Figure 1: Word2Vec training architectures.

In this work, we focus on the skip-gram architecture. The SG proposed in the original

Word2Vec is re-drawn in Fig 2. The input is a token of word tw , which is mapped to its word

vector)(wv , and is then used to predict the word vectors of its neighboring words. Given a

word sequence 1w , 2w , ..., Nw , the training process maximizes the following objective

function.

)|(log
1

0,1= ijijCjC

N

i
wwP

N
 (1)

where is the softmax function defined as

 .

)(exp

)(exp
=)|(

1=
i

w

T

w

W

w

I
w

T

O
w

IO

vv

vv
wwP

 (2)

Note that wv and wv are the input and output vector representations, respectively, of w , and

W is the number of words in the vocabulary. As shown in Fig 2, SG models do not take into

account the word order to predict the output. Therefore, these methods allow us to find out

close vectorial representation of a given word or context, but are not optimal in predicting

word sequences based on grammatical and syntactic properties of words.

Figure 2: Original Skip-gram model.

III. Proposed Method

In the bag-of-words structure, distances from target words in the context window are not

taken into account. In our proposed method, we try to make use of the distances in terms of

fuzzy weights in the training phase. Our method can basically be divided into two main

processes. The first process is to define adaptive fuzzy weights which denote sensibly the

importance of different words according to their distances to the target. The second process is

to integrate the fuzzy weights into the SG model of Word2Vec.

Two algorithms are proposed and implemented in our method, skip-gram and negative

sampling. Fuzzy weights are integrated in both algorithms. Negative sampling selects a

positive sample (target word tw) and some negative samples, trying to make these negative

samples differ from the target word in the training phase. Although negative sampling may

lower the accuracy a bit, but it improves the efficiency in model training.

Word2Vec works as follows. Before beginning to train a network model, as shown in Fig. 3, a

vocabulary is built depending on the corpus under consideration. Then random vectors are

generated to initialize all the word vectors in the vocabulary, named 0syn , and set zero to the

other synonyms, named 1syn , which connect word vectors to the output.

Figure 3: Connections in the network model.

To train the model, the first step is to select the target word, or positive word, pword , and

contextual words, or last words, lword , according to the window size. The skip-gram holds a

target word to train a last word in the window one at a time. The model adopts sigmoid

function as activate function and expects the output of similar words to be 1. In negative

sampling mode, the label of the target word would be set as 1 and the other samples would be

0. The accumulated error herr is calculated as

)(

)(
1

)(
0

1

1
=

p
l

syn
l

syn

e

output

 (3)

)(= outputlabelerroutput (4)

)(

)(1= p

loutputhh synerrerrerr (5)

where is a learning rate,)(0 lsyn is the vector of the lword in the context window and
)(

)(1 p

lsyn is the connections from vector lword to vector pword , and 1syn is updated by

)()(

)(

)(

)(01=1 l

output

p

l

p

l synerrsynsyn (6)

After training the positive sample and negative samples, the accumulated errors herr is for

back-propagation to fix 0syn by

 .0=0)()(

h

ll errsynsyn (7)

Our proposed method allows fuzzy weights into play with the updating of 1syn and 0syn .

Figure 4: Improved skip-gram algorithm.

As shown in Fig. 4, we calculate the fuzzy weights which are transformed from distances by

applying Gaussian functions. For the first process, to take advantage of the relationship of

distances between the contextual words and the target word, we replace the original binary

weighting of output vectors with Gaussian function values. Words in context are weighted

with)(iwG for word iw :

2

2

2

)(
=)(

 i
i

wd
wG (8)

where)(iwd is the distance between a training word and the target word, i is the order of

words in context, and the is the radius of Gaussian function. Fig 5 shows the value of each

position as a function of the distance from the center of the context window. This function is

then used to evaluate the distance relationship of the contextual words. If the position of a

contextual word is closer to the target word in the center, the target word would be more

influential in the training phase. Consequently, we adopt the following modifications:

 hih errwGerrnew *)(=_ (9)

 ._0=0)()(

h

ll errnewsynsyn (10)

Figure 5: A Gaussian function with 1002 .

Fig 6 presents the skip-gram model which incorporates the context weighting approach. The

skip-gram model refers to a word to predict its surrounding words. The training process

selects a center target word and one of contextual words to form a pair, and then does the

training pair by pair. If the weights were applied on word vector directly, the new vector

would be regarded as a different word, so we propose to apply the weights in the phase of

updating errors. Updating the accumulated error affects the most important learning steps of

skip-gram, so we adjust the weights to make similar words closer easily.

Figure 6: Fuzzy Weighted Skip-gram model, with and context window size .

Example
Assume in an article we have the following sentence:

Lions and jaguars hunt zebras, giraffes and gazelles in the savanna.

Let the context window size be 5, 100=2 , and the target word be giraffes. Table 1 presents

the involved fuzzy values. In this table, the first row lists the contextual words, the second

row shows the relationship according to the position of the target word, and fuzzy weights are

listed in the third row.

Table 1. Fuzzy weights of words

contextual Lions and jaguars hunt zebras
position -5 -4 -3 -2 -1
weights 0.29 0.45 0.64 0.82 0.95
contextual and gazelles in the savanna
position +1 +2 +3 +4 +5
weights 0.95 0.82 0.64 0.45 0.29

The following are training pairs:

(Lions, giraffes), (and, giraffes), (jaguars, giraffes), (hunt, giraffes), (zebras, giraffes),
(and, giraffes), (gazelles, giraffes), (in, giraffes), (the, giraffes), (savanna, giraffes).

When a weight is greater, the error feedback caused is more effective. In this example, the

vectors of ‘zebras’ and ‘gazelles’ may have more chance to get closer to ‘giraffes’ than to

‘Lions’ and ‘jaguars’.

Fig. 7(a) shows the distribution of the words in the vector space. In this figure, the length of

arrows stand for the strength of training weights. Note that the strengths are different due to

their positions. After updating the vectors, ‘zebras’ and ‘gazelles’ take a bigger step to

approach ‘giraffes’, but ‘Lions’, ‘jaguars’, and ‘savanna’ are less effective, as shown in Fig.

7(b).

(a) Before. (b) After

Figure 7: Words in the vector space: (a) Before updating; (b) after updating.

IV. Experimental Results

In this section, we evaluate the effectiveness of our proposed method. We also compare our

method with the original Word2Vec method. We conduct our experiments with the Google-

One-Billion-Word-Language-Modeling Benchmark containing around 1-billion words for

training. After training, there are 553,402 words in the vocabulary. Testing words are also

taken from Google, a file named question-word, containing 14 topics: capital-common-

countries, capital-word, currency, city-in-state, family, and 9 grammars. The Semantic-

syntactic Word relationship test is made of 19,558 questions. Its main objective is to verify if

a distributed representation of words captures complex syntactic and semantic relations

between words. A question is made of two pairs of words sharing the same relation. For

example, for the following question

‘woman’ ‘man’ = ‘queen’ ‘king’,

The model has to infer from ‘queen’ to ‘king’ through the relationship between ‘woman’ and

‘man’. A question in the capital-common-countries topic is something like

Athens Greece Baghdad Iraq.

All the test questions contain the rules of inference that people do in daily life. In other words,

if a model gets a large score in this test, the model is accurate in the semantic sense.

We perform experiments with different settings of the parameters for the window size,

dimension of vector space, and radius of Gaussian functions. The results with different

window sizes are shown in Table 2.

Table 2. Accuracy results with different window sizes

dimension = 100 w5 w10 w20 nMAX

capital-common-countries: 363 369 364 462

capital-world: 941 984 976 1295

currency: 7 5 7 40

city-in-state: 418 466 476 1700

family: 260 249 218 342

gram1-adjective-to-adverb: 191 215 235 930

gram2-opposite: 109 112 104 462

gram3-comparative: 1060 986 915 1332

gram4-superlative: 546 515 416 756

gram5-present-participle: 677 668 617 870

gram6-nationality-adjective: 1073 1088 1104 1160

gram7-past-tense: 876 868 844 1560

gram8-plural: 696 689 722 992

gram9-plural-verbs: 411 375 327 650

Total 7628 7589 7325 12551

Note that dimension = 100 for this table. Three window sizes are set, namely window size = 5,

10, and 15, represented by w5, w10, and w15, respectively. From this table, we can see that a

larger window may not improve the semantic accuracy, since the words far away the target

may act as noise for training. In many situations, further words may be less related to the

central word syntactically, but for some sentences in which an object mentioned far away may

have more influence for a setting with long context window. In Table 2, the topics like

‘capital-world’ and ‘capital-in-state’ contain more terms when the window size increases. As

a result, accuracy increases as the window size increases. The experimental results with

different dimensions are shown in Table 3.

Table 3. Accuracy results with different dimension sizes

window size = 5 d100 d200 d400 nMAX

capital-common-countries: 371 392 420 462

capital-world: 932 1044 1103 1295

currency: 5 8 10 40

city-in-state: 400 724 916 1700

family: 260 277 274 342

gram1-adjective-to-adverb: 191 183 167 930

gram2-opposite: 115 165 189 462

gram3-comparative: 1069 1171 1191 1332

gram4-superlative: 573 606 578 756

gram5-present-participle: 678 711 690 870

gram6-nationality-adjective: 1070 1090 1112 1160

gram7-past-tense: 871 920 948 1560

gram8-plural: 698 744 784 992

gram9-plural-verbs: 416 491 460 650

Total 7649 8526 8842 12551

For this table, window size is set to be 5, and three dimensions are set, namely dimension =

100, 200, and 400, represented by d100, d200, and d400, respectively. From this table, we can

see that the bigger the dimension of the vector space is, the higher accuracy is obtained. As

the dimension increases, more information can be stored in the hidden layer and the semantic

relationship among words can be more completely maintained. The experimental results with

different radii of Gaussian functions are shown in Table 4.

Table 4. Accuracy results with different radii

 Word2Vec r100 r125 r150 r175 r200 r225

capital-...: 392 412 408 406 403 404 403

capital-...: 1078 1081 1089 1087 1089 1085 1087

currency: 8 9 9 9 10 9 9

city-in-...: 920 1001 968 972 971 957 962

family: 246 269 267 264 260 257 259

gram1-...: 216 227 229 222 221 221 237

gram2-...: 186 171 178 178 174 174 172

gram3-...: 1120 1121 1108 1123 1112 1125 1129

gram4-...: 518 533 540 543 546 547 542

gram5-...: 691 698 690 696 698 693 703

gram6-...: 1129 1128 1128 1126 1128 1126 1128

gram7-...: 938 966 970 974 965 969 955

gram8-...: 784 786 794 795 800 791 787

gram9-…: 410 418 418 415 418 427 423

Total 8636 8820 8796 8810 8795 8785 8795

For this table, six values are set to the radius, namely 2 = 100, 125, 150, 175, 200, and 225,

denoted by r100, r125, r150, r175, r200, and r225, respectively. As can be seen, all the

versions of our proposed method perform better than the original Word2Vec in terms of

semantic accuracy. Our method can improve the semantic accuracy. However, more

execution time is needed. The computer system we have used for the experiments is shown in

Table 5. Table 6 shows the execution times required for Word2Vec and our method.

Table 5. Computing environment

Experimenting equipment

CPU Intel(R) Core(TM) Core i7-6700 @ 3.40GHz.

RAM 2133 GHz, 8 GB

OS Ubuntu 14.04 LTS x64

Develop tools Python 3.5

Tool Library gensim-0.13.2

Table 6. Comparison on execution time

 w5 Time:(s) w10 Time:(s) w15 Time:(s)

Word2Vec 8769 11837 8718 18574 8636 23576

r100 8798 11981 8796 18698 8820 23849

r125 8757 12345 8784 19134 8796 24481

r150 8782 12407 8801 19327 8810 24579

r175 8764 12504 8817 19709 8795 25032

r200 8808 12304 8801 19157 8785 24386

r225 8751 11993 8794 18768 8795 23845

As can be seen, our method runs slower than Word2Vec, but only slightly.

V. Conclusion

There are many situations where the words with similar meanings appear at the same time in

the same sentence. Word2Vec adopts the bag-of-words model to train a type of word

representation with the idea of context window. It makes senses that relevant words may

appear simultaneously in a context window. However, Word2Vec ignores the distance

information and treats each word equally in the context. In our work, we offer an alternative

method to weight the contextual words at different positions. Fuzzy values are exploited to

express the degree of importance a context word imposed on the target due to the distance

between them. The derived fuzzy values take part in the training of network language models.

From the experimental results, we have seen that our method can improve the semantic

accuracy for the Google-One-Billion-Word-Language-Modeling Benchmark dataset.

References

[1] Salton, G.and Lesk, M. E. (1968) Computer evaluation of indexing and text processing, Journal of the ACM
(JACM) 15, 8–36.

[2] Sparck Jones, K. (1972) A statistical interpretation of term specificity and its application in retrieval,
Journal of documentation 28, 11–21.

[3] Salton, G. and Buckley, C. (1988) Term-weighting approaches in automatic text retrieval, Information
processing & management 24, 513–523.

[4] Turian, J., Ratinov , L. and Bengio, Y. (2010) Word representations: a simple and general method for semi-
supervised learning, Proceedings of the 48th annual meeting of the association for computational linguistics,
384–394.

[5] Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C. (2003) A neural probabilistic language model, Journal
of machine learning research 3, 1137–1155.

[6] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J. (2013) Distributed representations of
words and phrases and their compositionality, Advances in Neural Information Processing Systems 26,
3111–3119.

[7] Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013) Efficient estimation of word representations in
vector space, CoRR, abs/1301.3781.

[8] Kim, Y. (2014) Convolutional neural networks for sentence classification, arXiv preprint arXiv:1408.5882.
[9] Socher, R., Bauer, J., Manning, C. D. and Ng, A. Y. (2013) Parsing with compositional vector grammars.

ACL (1), 455–465.
[10] Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., Potts, C. et al., (2013)

Recursive deep models for semantic compositionality over a sentiment treebank, Proceedings of the
conference on empirical methods in natural language processing (EMNLP) 1631, 1642

[11] Xue, B., Fu, C. and Shaobin, Z. (2014) A study on sentiment computing and classification of sina weibo
with word2vec, IEEE International Congress on Big Data (Big Data Congress), 358–363.

[12] Nigam, K., McCallum, A. K., Thrun, S. and Mitchell, T. (2000) Text classification from labeled and
unlabeled documents using EM, Machine learning 39, 103–134.

