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Abstract 
The problem of the Rayleigh-Benard convection for a chemical equilibrium gas is 
investigated using methods of linear analysis. The Boussinesq approximation is used for a 
plane layer with isothermal horizontal boundaries free from shearing stresses.  A previously 
developed model for chemical equilibrium is applied to calculate the thermodynamic 
parameters of the gas analyzed (hydrogen-oxygen mixture). Recombination and dissociation 
processes are shown to introduce an additional factor multiplying the Rayleigh number 
defined as in inert gas. Formulas for the increment of growth o infinitesimal perturbation and 
the critical Rayleigh number as a function of absolute temperature are obtained.  

Key words: Rayleigh-Benard convection, Rayleigh number, Prandtl number, chemical 
equilibrium, recombination, dissociation. 

 
Introduction 
The Rayleigh-Benard convection is a type of natural convection belonging to the area of 
classic science in whose frameworks a mathematical model based on the Boussinesq 
approximation and numeric methods were developed for this convection [1-4,13]. Scientists 
mainly focused on modelling convection for chemically inert gases and liquids. 
Convection processes happen in chemically reacting media as well. Such type of convection 
can be observed while gas mixture burns in large-scale reactors, technical installations and 
experimental facilities.  
Convection of a gas in chemical equilibrium is a particular, though quite common, case of 
convection in gases accompanied by chemical reactions, which can occur if the time scale of 
the reaction is much shorter than that characteristic for the convection process.  
It should be expected that quantitative and qualitative characteristics of convection mainly 
depend on the type of the thermal expansion coefficient dependence on temperature, which 
determines the buoyancy force casing convection. 
The thermal expansion coefficient of a chemically inert gas is monotonic and inversely related 
to the temperature. In the case of a chemically active equilibrium gas, the dependence of this 
coefficient on temperature changes considerably and becomes non-monotonic with a clear 
local maximum, where the value of the coefficient for a chemical equilibrium gas can exceed 
that of a chemically inert gas by several times [5-9]. Such anomalous dependence of the 
coefficient on the temperature expansion  (other than 1/T) leads to considerable changes in 
quantitative and qualitative characteristics of convection regimes in a chemical equilibrium 
gas compared to those in a chemically inert gas. 
Authors in [10-12] were the first to formulate and solve numerically a two-dimensional 
problem for Rayleigh-Benard convection in a chemically active equilibrium gas, as well as 
considered linear and non-linear regimes. The molar mass and thermodynamic parameters of 



 
 

the gas were calculated according to a previously developed model of chemical equilibrium 
[5-9]. The results of the linear and non-linear analysis [10-12] need additional investigations 
and improvements. In addition, the physical and mathematical model provided in [10-12] is 
quite complicated and inconvenient; while representing the dependence of the thermal 
expansion coefficient on the whole range of the real (not dimensionless!) temperature, a 
second degree polynomial equation with four constants is used instead.   
Further investigations into the problem showed that the realization of the model proposed in 
[10-12] can be considerably simplified as recombination and dissociation processes in gases 
under the temperature given can be taken into account through multiplying the Rayleigh 
number by an additional factor, the function of absolute temperature. 
In terms of convection in a laboratory, the gas compressibility can be neglected and the 
convection media can be considered as incompressible. Moreover, if the domain has a certain 
geometry and small supercriticality, convection develops as two-dimensional rollers [13], 
which allows us to consider two-dimensional convective flows of a viscous incompressible 
fluid even at the first stage of our investigation.  
Following [10-12], we consider a convective two-dimensional and non-stationary flow of a 
viscous incompressible fluid in the horizontal layer heated from below in the Boussinesq 
approximation. The boundaries of the layer are assumed isothermal and free from shearing 
stresses. Thermodynamic parameters of a chemical equilibrium gas are calculated according 
to the model in [5-9].   
The present work is aimed at describing a simpler and improved realization of a physical and 
mathematical model for convection of a chemically active gas in equilibrium and at specifying 
the results of the linear analysis. 

 
Nomenclature 
The following notations will be used:  

 
ρ, P, T and  m - the density, pressure, absolute temperature and molar mass of the gas; 
R - the universal gas constant; 
mmin, mmax - the molar masses of the gas in the completely dissociated and 

completely recombined states; 
A, K+ - the rate constants of dissociation and recombination of the 

generalized reaction products; 
θ - the effective excitation temperature of the vibrational degrees of 

freedom of the molecules; 
E - the mean dissociation energy of the reaction products; 
β - the thermal expansion coefficient of the gas with chemical reactions; 
βin = 1/T - the thermal expansion coefficient of the inert ideal gas; 
u, v   - the velocities in x and y directions; 
ν, χ - the kinematic and thermal diffusivity coefficients; 
Th, Tc - the temperatures of the lower and upper boundaries; 
H - the thickness of the layer; 
ψ - the stream function (ψ y = u and ψ x = -v); 
ω - the vorticity ω = vx – uy; 
Ra = gβH3δT/χν - Rayleigh number; 
Racr, αm - the critical values of Rayleigh and wave numbers; 
Pr = ν/χ - Prandtl number; 
λ, α, πm - the eigenvalue and the wavenumbers of linear problem in x and y 

directions; 
Q = T-Te - the temperature deviation from linear equilibrium distribution. 



 
Kinetic model 
To describe chemical equilibrium in the gas mixture, we use a highly accurate kinetic model 
[5-9]. According to this approach, the density of a chemical equilibrium ideal gas can be 
considered as a function of the absolute temperature and pressure:  
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The molar mass of the gas can vary within the interval μmin ≤ μ ≤ μmax. We have μ → μmax with 
decreasing temperature and μ → μmin with increasing temperature. 
We assume that the pressure P in the gas mixture (external pressure) is constant. Then, the gas 
density ρ, as is seen from system (1), depends on the absolute temperature T only. For the 
purposes of comparing our results with those in [10-12], our linear analysis was performed 
with the pressure changing in the same range, from 10-5atm to 105atm. 
The model of chemical equilibrium used [5-9] favors simplicity, accuracy and compatibility 
with the principle of entropy increase. It takes into account considerable changes of the molar 
mass, the temperature effect, heat capacities and the ratio of specific heats due to the change 
of chemical equilibrium. All the constants in the model are physically clear.  
Such equations are usually used to calculate chemical equilibrium in hydrogen-oxygen 
mixture and hydrocarbon-oxygen mixtures [6-8], in heterogeneous mixtures of gas-
condensed-phase type in the presence of the interphase mass transfer [7] and heterogeneous 
mixtures of gases with chemically inert particles [9]. Two-stage models of detonation 
combustion of methane in oxygen and air have also been proposed [14]. 
The model of chemical equilibrium in question is particularly useful for scientific and applied 
problems, e.g., while modelling detonation processes in chemically active bubble systems 
[14,15], designing equipment for fluidized bed coating by means of gaseous detonation [16], 
using detonation suppression by inert particles [17-19], calculating concentration limits for 
gas mixture flammability [20].  
As it is seen from system (1), the ratio for the molar mass as a function of temperature is as 
follows: 
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The present paper refers to a stoichiometric hydrogen-oxygen mixture. The numerical values 
of the constants were as follow: E = 459.2·kJ/mole, Θ = 4000К,  
K+ = 6·108m6/(kmole2·sec), A = 5.1·1010m3/(kmole·sec·K3/4), μmin = 6kg/kmole, μmax = 
18kg/kmole [5-9].      
Considering the ratio for f at comparatively “low” and high temperatures T and taking into 
account 
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we have the following for the “low” temperature  
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The thermal expansion coefficient β can be found dependent on the density or the molar mass 
as 
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Notice that the asymptotic approximation of the molar mass µ to constants as the temperature 
is reduced or increased allows us to find the asymptotics for the thermal expansion coefficient 
β as β = 1/T. 
Figures 1-4 and 7 show the asymptotic curves calculated with the full formula for f where all 
the coefficients in expression for f were used. Figures 1 - 7 were plotted with P = 1atm.   
The solid curve in Fig. 1 shows the molar mass μ = μ (T), asymptotics for the “low” (μas1, 
curve 1) and high (μas2, curve 2) temperatures as well as μ = μmax (3) and μ = μmin (4). The 
asymptotic curves μas1 (curve 1) and μas2 (curve 2) are correct for both comparatively low  
(T ≤ 3500К) and high (T ≥ 5000К) temperatures. 

 

 
Fig. 1. The molar mass and its asymptotics 

 
The solid curve in Fig. 2 shows the density of the chemical equilibrium gas ρ = ρ(T) at 2∙103K 
≤ T ≤ 6⋅103K. Again, we see two asymptotics ρ1 = mas1P/(RT) (dashed curve 1) and  
ρ2 = mas2P/(RT) (dashed curve 2) corresponding to comparatively low (T ≤ 3500К) and high  
(T ≥ 5000К) temperatures, in comparison to curves ρ3 = mmaxP/(RT) (dot-and-dash curve 3) 
and ρ4 = mminP/(RT) (dot-and-dash curve 4) for absolutely recombined and dissociated 
conditions respectively. The curves are quite accurate for both low and high temperatures. 
Notice that throughout the range of temperature changes the density depends on the 
temperature monotonically. 



 
Fig. 2. The gas density 

 
The solid curve in Fig. 3 shows the thermal expansion coefficient β = β(T) while the dot-and-
dash line β = 1/T for ideal gas shows the close values at T ≤ 2000K and T ≥ 6000K. Again, we 
see two asymptotics (dashed curves 1 and 2) with close values at comparatively low  
(T ≤ 3500К) and high (T ≥ 5000К) temperatures. We see the temperature interval where the 
thermal expansion coefficient β demonstrates an anomalous behavior (different from 1/T) with 
noticeable local maximum. As it is shown below, it is this anomalous behavior that causes a 
possibility of convective instability amplification in comparison with inert gas.  

 

 
 

Fig.3. The thermal expansion coefficient 
 
 

Mathematical model 
Convection of incompressible fluids in the Boussinesq approximation is described by the 
following system of equations [1,2]: 
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Here, Ra = gβinH3δT/χν = gH3δT/(Tχν) and Pr = ν/χ are Rayleigh and Prandtl numbers, here  
βin = 1/T is the thermal expansion coefficient of the inert ideal gas as function of the absolute 
temperature T. 
We choose the following reference values for the layer: Н for length, H2/ν for time, χ/H for 
velocity, ρ0νχ/H2 for pressure, ρ0 = ρ(T) for density,  and δT = Th - Tc for temperature, Q is 
temperature deviation from equilibrium linear distribution, Δf = fxx + fyy is the Laplace 
operator, φ and  ω are stream function and vorticity respectively. The thermal expansion 
coefficient β is considering as constant in system (2) at chosen absolute temperature T.  
According to the buoyancy force in the first equation of system (2), we see that the convection 
rate is defined by C∙Ra. The Rayleigh criterion specifies the ratio between the buoyancy force 
and the viscosity and depends on the temperature gradient or the degree of heating, while the 
dimensionless factor C depends on the recombination and dissociation processes under the 
temperature given. 
Figure 4 shows function C = C(T) at P = 1atm and  two asymptotes (dashed curves 1 and 2). 
It can be seen that in domain (2000K ≤ T ≤ 8000K) the chemical reactions in gas increase the 
convection intensity. When the temperature falls (T < 2000K) or rises (T > 8000K), the 
convection intensity decreases up to convection intensity level in an ideal inert gas. The 
maximum convection intensity is realized at the points of local extremum of the factor C = 
3.907 at T = 4051K. 

 

 
Fig. 4. Factor C = C(T) 

 
Considering the relation for f at comparatively “low” and high absolute temperatures T, we 
have the following asymptotics for the “low” and high temperature  
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The solid curve in Fig. 5 shows the function f = f(T) and  its two asymptotes fas1 and fas2 
(dashed curves 1 and 2) with close values at comparatively “low” (T ≤ 4000К) and high  
(T ≥ 55000К) temperatures. The two vertical lines correspond T = Θ = 4000K and T = E/R = 
5.523∙104. 

 

 
Fig. 5. The function f(T) 

 
At a considerably high temperature (T ̴ E/R ̴ 5·104K) power asymptotics for f is stated, which 
allows us to obtain far-field asymptotics for β and C.  
Actually, taking into account  
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The dependences given show that β and C approach asymptotics with the rise of the 
temperature quite slowly, which means that the corresponding boundary is fuzzy. 

 
 
 

Linear analysis 
We consider the linear analog of system (2): 
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We seek approximate solutions of system (3) in the form: 
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Here λ is the eigenvalue, where λ > 0 is matched by amplitude losses and λ < 0 by amplitude 
rises in harmonic solutions, α and mπ are the wavenumbers in x and y directions, and Ω and Θ 
are constants.  
Plugging (4) into (3) and using standard calculations [1,2] we find: 
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where S = α2 + m2π2, too. 
Let us consider the ratio dλ = λin/λr between maximal increments in the inert λin and reacting λr 
gases. The asymptotical value of dλ can be found as 
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Here the maximum of the factor Cmax is equal to 3.907 at P = 1atm and T = 4051K. 
Figure 6 shows the value dλ = λin/λr as function of the supercriticality r = Ra/657.511 where 
the pressure and absolute temperature are equal to 1atm and 4051K respectively. It can be 
seen that three distinct domains exist at various supercriticality r. At 0 < r < 1/Cmax,  
1/Cmax = 0.256 (domain d1) only the quantitative difference is observed since the convection 
in inert and reacting gases is stable. At 1/Cmax ≤ r < 1 (d2) the qualitative difference is seen 
since the convection in inert gas is stable and convection in reacting gas is unstable or neutral. 
At 1 ≤ r (d3) the quantitative difference is observed since the convection in the inert and 
reacting gases is unstable (or neutral for inert gas). 

 

 
Fig.6. The increment ratio dλ versus supercriticality r  

 
Assuming increment λ2 in (5) equal to 0, one can obtain the Rayleigh number corresponding 
to the neutral curve:  
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The critical value of the Rayleigh number (minimum of Ra versus α with m = 1) can be found 
by the formula 

427 657.511, 2.221.
4cr crRa
С С
πa = = =  

The factor 657.511 is identified here as the critical value of the Rayleigh number for the 
convection in a chemically inert media [1,2], and the factor 1/C as the function of temperature 
and pressure is due to recombination and dissociation processes. 



Providing C - 1 is small (for |T – Θ| >>1), one can obtain the critical value of the Rayleigh 
number as the principal member of the power series expansion: 
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Using the C asymptotics found above under the temperature approaching infinity, we can 
obtain the far-field asymptotics for Racr and lengthy asymptotic formula for increment λ. 
Taking into account  
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Here λr and λin are increments for the reacting and inert gases correspondingly. 
Figure 7 shows the critical Rayleigh number as a function of T for pressure P = 1atm (solid 
curve), two its asymptotes (dashed curves 1 and 2) and Racr = 657.511∙(2-C) (dashed curve 
3). It can be seen that in domain (3000K ≤ T ≤ 5000K, T ≈ Θ = 4000K) the chemical reactions 
in gas considerably decrease the critical Rayleigh number. 

 

 
Fig.7. The neutral curve in the plane T-Ra for pressure 1atm  

 
Figure 8 shows the critical Rayleigh number as a function of T for pressures P = 1atm (solid 
curve 1), P = 0.1atm (dashed curve 2), and P = 10atm (dashed curve 3). The pressure 
increasing, the convection intensity amplification domains move while expanding towards 
higher temperatures. The latter is more obvious for the high-temperature boundary of domain. 

 



 
Fig.8. The neutral curve in the plane T-Ra for various pressure  

 
As one can see, Figure 8 shows a relatively low increase in the critical Rayleigh number 
(minimum with respect to T) while the pressure increases (about 3.6 times while the pressure 
increases by 10 orders of magnitude):  
Racr = 657.511/C ≈ 657.511/(3.9241 – 0.44393∙lg(P/1atm) )  and  
Racr ≈ 159.33 + 8.2324∙P/1atm  at the near-normal pressure P ≈ 1atm.  
The convective processes intensiveness can be influenced. The critical Rayleigh number Racr 
is weakly depending on the pressure, the intensiveness decreases as the pressure grows, 
changing from the maximum values at low pressure to minimal values at high pressure. 
Another and cardinal way to affect the intensiveness is to change the temperature. The 
intensiveness of convective processes is equal to zero at high and low temperatures and is 
different in between. Of course, it is possible to change both the pressure and the temperature.   
In order to study the possibility to control convective processes by changing the pressure and 
the temperature in more details, consider the instability domain on R-T plane in Fig. 9.  
A curve 1 in Fig. 9 correspond to the temperatures at which the maximum convection 
intensiveness at given pressure is observed (maximum C with respect to T corresponds to 
curve Racr). Curves 2 and curve 3 correspond to the top and low boundaries of domain where 
reacting-inert gas transitions are observed. 

 

 
Fig. 9. The instability domain on the plane R-T  

It is obvious that the highest increase in temperature by 155 times occurs at the upper 
boundary of the reacting-inert gas transition (curve 2), whereas the other curves demonstrate a 
substantially smaller change of temperature. For instance, at the lower boundary of the 
reacting-inert gas transition (curve 3), the change is by one order of magnitude less.  



Curve 1 (the maximum convection intensiveness at given pressure) on the plane R-T is 
accurately described throughout the range of pressure change by 
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and at the near-normal pressure P ≈ 1atm by 
T(P) = 3814.9 + 284.67∙ lg(P/1аtm). 

Similar approximate expressions for curves 2 and 3 on the plane R-T, where the top and low 
boundaries of the reacting-inert gas transition are realized as follow: 
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Considering the expressions above for P  ̴  1atm, we obtain that: 
T(P) = 6922.0 + 897.84∙P/1atm for curve 2 and  
T(P) = 1968.8 + 79.253∙P/1atm for curve 3. 

At the same time, the value of local maximum C that characterize the convection 
intensiveness vanishes in a practically linear way with respect to lg(P): 
C(P) = 3.9241 – 0.44393∙lg(P/1atm) along curve 1 and 
С(P) = 4.1169 – 0.19280∙P/1atm  at the near-normal pressure P ≈ 1atm.  
 
Conclusion 
A new physical and mathematical model for convective flows of a gas in chemical 
equilibrium has been suggested. The flow is considered in a horizontal layer with heating 
from below. The gas is assumed to be viscous and incompressible, and the convective flow 
two dimensional and non-stationary. The horizontal boundaries of the layer are isothermal and 
free from shearing stresses. The parameters of the gas in chemical equilibrium (hydrogen-
oxygen mixture) are calculated according to the model of chemical equilibrium proposed 
earlier.  Given recombination and dissociation processes, an additional factor С = C(T) 
appears as factor with the Rayleigh number in the system of equations describing convection. 
Hence, all the regimes and characteristics of convective flows of a chemical equilibrium gas 
can be derived from the corresponding characteristics of convection in a chemically inert 
medium when the Rayleigh number is overdetermined.  
The results of linear analysis of the stability of a convective flow are presented. In particular, 
for a chemically active gas in equilibrium we obtained formula for the infinitesimal 
perturbation growth rate increments and formula for the critical Rayleigh number depending 
on temperature at given pressure. The neutral curve on the plane T-Ra shows the significant 
decreasing of the critical Rayleigh number in the reacting gas. The critical Rayleigh number 
(minimum with respect to T) depends on the pressure relatively weakly. The domain of the 
intensity convection increase due to chemical reactions in reacting gas on the plane R-T 
extends significantly towards higher temperatures when the pressure increases, which is 
especially true for the top high-temperature inert-reacting gas boundary. 

  
Discussion 
If we take into account recombination and dissociation processes, there appears an additional 
factor С = C(T) with the Rayleigh number in the system of equations describing convection. 
Hence, all the regimes and characteristics of convective flows of a chemical equilibrium gas 
can be derived from the corresponding characteristics of convection in a chemically inert 



medium when the Rayleigh number is re-determined. In this respect, calculations of non-
linear regimes of convection of a chemically active equilibrium gas yield little information. 
In the present work the far-field high-temperature asymptotics for factor C, critical Rayleigh 
number and the increment λ is derived. It would be of certain interest to investigate also the 
low-temperature asymptotics.  
The performed linear analysis shows the existence of the anomalous (non-monotonic) 
behavior of the thermal expansion coefficient in spite of the monotonic dependence of density 
on temperature. It seems to be possible that such anomalous (non-monotonic) behavior of the 
thermal expansion coefficient must bring to the secondary instability because of thermal 
expansion coefficient temperature dependence.  
It would be of certain interest to prove experimentally the existence of the secondary 
instability because of thermal expansion coefficient temperature dependence. Another point of 
interest is related to the generation of the new physical and mathematical model and 
numerical investigation of such secondary instability. Of cause, the numerical investigation of 
this secondary instability must be performed with investigation of all regimes of flow together 
with defining the boundaries of temperature intervals where such regimes are observed, 
followed by researching integral characteristics, etc. 
We acknowledge financial support of this work by Russian Foundation for Basic Research Gr. 
№15-08-05166 and №17-58-53100.  
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