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Abstract 

Though the node-based smoothed finite element method (NS-FEM) possesses many superior 
properties and those prominent inherent properties make it very attractive for researchers, it 
may be “temporally” unstable when it comes to time-dependent problems. Nevertheless, many 
physical problems are time-dependent. To apply the NS-FEM to multiple physical problems, 
effective numerical improvements are essential to cure its temporal instability. Based on this, 
a stable node-based smoothed finite element method (SNS-FEM) is introduced and the 
general form of the method is presented in this paper. In the formulation of the SNS-FEM, the 
simplest linear triangular and tetrahedral elements are employed and the node-based 
smoothing domain is then constructed on top of element mesh. Gradients variance items of the 
field variables are considered besides the gradients of the field variables to compute the 
system stiffness matrix over the smoothing domain. As a result, the system stiffness is 
strengthened appropriately and the temporal instability of the NS-FEM is able to be cured. 
The SNS-FEM has been applied to analyze multiple physical problems such as acoustic, heat 
transfer and electromagnetism problems. Numerical results demonstrate that the SNS-FEM is 
temporal stability and well suited to various physical problems. In addition to this, the SNS-
FEM possesses super accuracy and high computational efficiency. 

  

Keywords: Numerical method, Node-based smoothed finite element method, Temporal 

stability, Acoustic, Heat transfer, Electromagnetism. 

Introduction 

The finite element method (FEM) [1]-[3], one of the most powerful numerical methods, is 

widely used in science and engineering for its simplicity and efficiency. During the past 

decades, the FEM has been made much progress and extended to almost all areas of 

engineering and sciences such as structural analysis, mechanical engineering, material science, 

structure optimization, etc..  

The FEM is well suited to various problems with complex geometry. However, in practical 

applications, the standard finite element method has also been found many limitations and 

drawbacks [4]-[5] like poor accuracy with lower order elements, sensitive to mesh distortion, 

volumetric locking phenomenon. These drawbacks seriously restrict the application of the 

FEM and many numerical improvements [6]-[9] have been developed to solve such issues. 

Among these methods, the mesh-free method [6],[8],[9] is very promising and achieves many 

remarkable progresses. As the mesh-free method is implemented beyond the elements, the 

process is more flexible and the results are insensitive to mesh distortion. Nevertheless, the 

operations in mesh-free methods are generally more complicated and can be quite costly in 

terms of the computational effort and resources [10]. 



 

In searching for more effective alternatives, Chen and his co-workers proposed a stabilized 

conforming nodal integration (SCNI) [11],[12] approach based on the strain smoothing 

techniques. Then, the strain smoothing techniques has been successfully applied to the finite 

element method by Liu et al. [10],[13]-[19]. And based on this, a series of smoothed finite 

element methods have been developed such as the cell-based smoothed finite element method 

(CS-FEM) [13]-[14],[20]-[21], the node-based smoothed finite element method (NS-FEM) 

[22]-[26], the edge-based smoothed finite element method (ES-FEM) [27-32], the face-based 

smoothed finite element method (FS-FEM) [33]-[36] and so on [37]-[41]. In recent years, the 

S-FEMs have been developed greatly and it has been proven that the S-FEMs carry many key 

features of the standard FEM and mesh-free methods. The S-FEMs is regarded as one of the 

most promising methods for science and engineering and has already been applied to solve 

various practical problems [20]-[41]. 

Among these remarkable S-FEMs, the NS-FEM is regarded as one of the “start” elements by 

many researchers for it possesses many excellent features in application to solid mechanics 

problems. The NS-FEM is proposed based on the node-based smoothing technique and the 

system stiffness matrix is calculated based on the smoothing domain associated with nodes. 

Studies have shown that the NS-FEM is well immune from the volumetric locking and 

possesses the upper bound property in strain energy [22]-[23], [25]. In the formulation of NS-

FEM, the stress at nodes can be computed directly from the displacement results without any 

post-processing and it can achieve super-accurate and super-convergent properties of stress 

solution using the simplest linear triangular and tetrahedral elements. In addition, as the field 

gradients are obtained directly through the shape functions, i.e., no coordinate transformations 

are involved, the NS-FEM performs well even severely distorted elements are employed. 

These dramatic properties make the NS-FEM very attractive for researchers and engineers. 

Though the node-based smoothed finite element method (NS-FEM) possesses many superior 

properties, it has been found temporal instability when it comes to time-dependent problems. 

It has been proved that the temporal instability is mainly caused by the “overly-soft” property 

of the NS-FEM model [37]-[38]. To cure the temporal instability of the NS-FEM as well as 

expand its application limits, various numerical improvements [37],[38],[42]-[50] have been 

proposed in recent years. Overall, these numerical treatments can be classified into two 

categories. Beissel and Belytschko [43] added a squared-residual of the equilibrium equation 

to the potential energy functional as a stabilization term to improve the performance of the 

nodal integration of the element free Galerkin method where the temporal instability of nodal 

integration is firstly found. Then the squared-residual stabilization technique has been further 

developed by Zhang et al. [44], Feng et al. [45] and Wang et al.[46]. These studies can be 

regarded as the first class of the numerical improvement in which a parameter α is involved in 

the stabilization process to adjust the system’s stiffness. Another class of numerical 

improvements is formulated by combining the “overly-soft” NS-FEM with the “overly-stiff” 

FEM, such as the hybrid smoothed finite element method (HS-FEM) [47]-[50]and the alpha 

finite element method (α-FEM) [37]-[38]. These methods can also provide very accurate 

numerical solution with a proper parameter α. However, no matter which class of the method 

is employed, there is always a parameter which has a great influence on the numerical results. 

And it’s still an unsolved problem about how to obtain an optimal parameter as both the 

nature of the problem and the size of mesh discretization will have great influence on the 

parameter.  

Recently, a stable node-based smoothed finite element method (SNS-FEM) without any 

uncertain parameter has been proposed by Feng et al. [51] and Wang et al. [52]. In this novel 

SNS-FEM, the simplest linear triangular and tetrahedral elements are employed to discretize 



the problem domain and the node-based smoothing domain is then further constructed. Unlike 

the original NS-FEM, the gradient variances of the field variables are taken into account to 

construct the stable items to strengthen the system stiffness. As there is no uncertain 

parameter is introduced in this process, this is a fantastic step forward. The SNS-FEM has 

been successfully applied to solid mechanics [51], acoustic [52]-[53], heat transfer [54], 

electromagnetism [55]-[57] and stochastic problems [58]. It’s found that the SNS-FEM can be 

easily extended to multiple physical problems and can generally provide very accurate 

numerical solutions. Therefore, a general form of the SNS-FEM for multiple physical 

problems is introduced in this article and its application on acoustic, heat transfer and 

electromagnetism problems are presented as examples to investigate the performance of the 

SNS-FEM.  

In this work, the application of the SNS-FEM on multiple physical problems will be presented. 

The rest of the paper is organized as follows: The general form of the SNS-FEM for multiple 

physical problems is briefly in the next section. After that, numerical examples of different 

physical problems are studied. Some concluding remarks are made in the last. 

General Form of the SNS-FEM 

The NS-FEM is one of the “start” elements in the S-FEM family and possesses many 

excellent features. Based on the node-based strain smoothing technique, the node-based 

smoothed finite element method is proposed for solid mechanics problems. When extending 

the NS-FEM to various physical problems, the smoothing operation is carried out based on 

the gradient of the physical field variables (such as the acoustic pressure, temperature and 

magnetic vector potential and so on). 

Node-based gradient smoothing operation 

Field node Mid-edge-point Centroid of the tetrahedron

(a) 2D (b) 3D

Centroid of the triangle
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Figure 1.  A common process to construct the node-based smoothing domain 



 

In the formulation of the NS-FEM, the numerical integration procedures for the system 

stiffness matrix are performed based on the node-based smoothing domain which is 

constructed based on the elements but beyond the elements. Typically, the problem domain Ω 

is first discretized using Ne triangular or tetrahedral elements in the same manner as in the 

standard FEM. Based on the obtained background mesh, the problem domain is further 

subdivided into Nn non-overlapping and non-gap smoothing domains such that 1
nN s

i i  
 

and  ( )s s

i j i j    , in which Nn denote the total number of field nodes. Fig. 1 shows a 

common process to construct the node-based smoothing domain. For an interior node k, in 

two dimension spaces, the node-based smoothing domain s

k  is constructed by linking the 

mid-edge-points and the central points of the elements associated with the node k in order. 

When it comes to three dimension spaces, the smoothing domain s

k  for node k can be 

constructed by linking the mid-edge-points, the centroids of surface triangles together with the 

central points of the tetrahedrons associated with the node in proper order. 

When the standard FEM is employed to solve some common physical field problems, the field 

variables within each element can be obtained using the interpolation form 

 
1

(x)
pN

i i

i

N


φ φ   (1) 

where φ denotes the physical field variables (scalar: acoustic pressure, temperature; vector: 

magnetic vector potential); Np is the number of nodes in each element; Ni(x) is the shape 

function value at i-th node; φi is unknown nodal field variables value. Based on the standard 

Galerkin weak form, the system stiffness matrix K can be written as the following general 

form 
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in which B is the general gradient matrix; D is a matrix of material constants. 

Using the gradient smoothing technique and introducing the Green’s divergence theorem, the 

gradient of the physical field variables in the node-based smoothing domain s

k  can be 

generally expressed as 
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where φ  represents the smoothed gradient of the field variables; Ak denotes the area or the 

volume of the smoothing domain; s

k  is the boundary of the node-based smoothing domain; 

Mk denotes a set containing all nodes located in the influence domain of node k. It should be 

noted here that Eq. (3) is just a general form of the gradient items and the specific form of a 

certain physical problem may be slightly different from this. As the Green’s divergence 

theorem is introduced, the area integration over the smoothing domain is converted into the 

line integral along s

k . And then, the components of the smoothed gradient matrix B  can be 

written as 
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Replacing the compatible gradient component shown in Eq. (1) with the smoothed gradient, 

the smoothed system stiffness matrix can be further explained as 
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Stabilization of the NS-FEM 

To cure the instability of the traditional node-based smoothed finite element method, a 

stabilization item is constructed and employed to strengthen the system stiffness matrix shown 

in Eq. (5). As described above, the gradient of the field variables in each smoothing domain is 

constant, that is, gradient changes over the smoothing domain are ignored. Thus, gradient 

variances of the field variables are taken into account to construct the stable items. Generally, 

the smoothing domain is a polygon (2D) or polyhedron (3D) that can be approximated as a 

circle or sphere domain sc

k  with the same area or volume. The equivalent circle or sphere 

domain is then further divided into four or six sub-domains equally. And based on the 

obtained sub-domains, four or six points located in x-axis, y-axis, z-axis with the same 

distance re to node k are chosen to be the integration points gi (i=1,2,…,6), as shown in Fig. 2. 

The equivalent radius of the approximate domain can be obtained by 
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Figure 2. The approximate integration domain and integration points for SNS-FEM 

Assuming that the gradient of the field variables in the smoothing domain is continuous and 

derivable at the first order, thus, the Taylor expansion of the gradient at node k can be 

expressed as 
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After this, the gradient items at each integration points ( )sc

kiφ  (i=1, 2, 3, 4, 5, 6) can be 

obtained and expressed as 
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By introducing Eq. (8) into the smoothed Galerkin weak form, the smoothed stiffness matrix 

over the smoothing domain can be modified as 
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in which 
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Obviously, the system stiffness matrix has been strengthened. Besides, it is important to note 

that the other components of the system equilibrium equations are same to the standard FEM 

and thus will not be addressed here. 

Application to Multiple Physical Problems 

Though the NS-FEM possesses many superior properties, it is failed to solve time-dependent 

physical problems due to the “overly-soft” property. In this section, the SNS-FEM extended to 

various acoustic problems, heat transfer problems and electromagnetic problems to investigate 

the performance of the proposed strategy. For comparison, the results of the traditional FEM 

are also provided. 

Acoustic Problems 

Computational acoustic governed by Helmholtz equations has been an area of active research 

for nearly half a century and various methods has been proposed [59]-[60]. The main 

challenge in solving such problems is the dispersion error which increases dramatically at 

higher frequency ranges [61]-[62]. Although using refined meshes could alleviate the 

dispersion effect, a large amount of computational cost will be consumed, which produces 

great burdens for large scale three-dimensional practical engineering problems. Aimed at this, 

Wang et al. [52] extended the SNS-FEM to acoustic problems and it turns out that the SNS-

FEM can reduce the dispersion error in acoustic problems significantly. Thus, much accurate 



numerical solutions can be obtained using the SNS-FEM with a rather coarse mesh in the 

higher frequency range. 

Fig. 3 shows a 3D car passenger compartment with different kinds of boundary conditions, 

namely, Neumann boundary condition and Robin boundary condition. A vibration boundary 

condition with normal velocity 0.01 m/snv  , i.e., Neumann boundary condition, is imposed 

on the front panel of the passenger compartment to simulate the vibration from the engine. On 

the roof of the passenger compartment, sound-absorbing material with admittance coefficient 
30.00144 m /(Pa s)nA    is fixed and regarded as Robin boundary condition. Then, the 

problem domain is discretized using 4459 nodes and 19278 tetrahedral elements. The average 

nodal spacing is about 0.11 m which gives an upper frequency limit of 492 Hz based on the 

well-known “the rule of thumb”. Using this mesh, the direct frequency response analysis is 

conducted. The sound pressure levels (SPL, ref=2×10
-5

 Pa) at the driver’s ear point and the 

passenger’s ear point with a full frequency range varies from 1.0 Hz to 500 Hz at intervals of 

2.0 Hz are illustrated in Fig. 4. As there is no analytical solution available, the reference 

solutions are obtained using the FEM with a very fine mesh. It’s clear that the SNS-FEM can 

always provide very accurate results in the full frequency range, while the standard FEM is 

only available in the lower frequency range. This results prove that the SNS-FEM reduces the 

dispersion error significantly which indicates that the SNS-FEM can be used to solve higher 

frequency problems with rather coarse mesh. Thus, the SNS-FEM is very promising in 

dealing with such mid-frequency acoustic problems. 

Driver's ear point

Passenger's ear point

Absorbing material

Velocity boundary
 

Figure 3.  3D car passenger compartment with different kinds of boundary conditions 
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(a) Driver’s ear point (b) Passenger’s ear point 

Figure 4.  The sound pressure levels at the driver’s ear point and the passenger’s ear 

point 



 

Heat Transfer problems 

The analysis of heat transfer problems is always of great importance in science and practical 

engineering and the finite element method has been used for such problems for a long time 

[63]. However, the poor accuracy and sensitive to mesh distortion properties of the standard 

FEM have let researchers and engineers down. Cui et al. [56] employed the SNS-FEM to 

analyze steady and transient heat transfer problems and prove that the SNS-FEM preforms 

much better in accuracy and efficiency.  
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Figure 5.  The geometric parameters and the thermal boundary conditions of the piston 

model 

  
(a) Point D (b) Point E 

Figure 6.  Temperature history of two concerned points 
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Figure 7.  The convergence of the thermal equivalent energy after the system stabilized 

A 3D piston model is employed to investigate the performance of the SNS-FEM in analyzing 

3D heat transfer problems. The geometric parameters and the thermal boundary conditions of 

the piston model are shown in Fig. 5. In the computation, the related parameters are taken as 

the specific heat c=10 J/(kg•℃), the thermal conductivities kx=ky= kz=5 W/(m•℃), the 

prescribed heat flux q=-2000 W/m2, the convective heat transfer coefficient h= 1000W/(m2

•℃), and the temperature of surrounding medium Ta =400 ℃. The reference solutions here 

are obtained using ABAQUS with a very dense hexahedron mesh. The temperature history of 

two concerned points D and E are shown in Fig. 6. It’s shown that the numerical solutions 

obtained using the SNS-FEM can always keep in good agreement with the reference. The 

convergence of the thermal equivalent energy against the number of degrees of freedom after 

the system stabilized is presented in Fig. 7, from which better results of the SNS-FEM can 

also be seen obviously. 

Electromagnetic Problems 

Electromagnetic problems have been studied for decades by researchers and variety of FEMs 

and meshless methods have been developed for such problems [64]-[65]. The primary field 

variable for electromagnetic problems is the magnetic vector potential (vector field), which is 

different from the scalar fields (acoustic pressure, temperature) for acoustic and heat transfer 

problems. Recently, Feng et al. [57] employed the SNS-FEM to solve static and quasi-static 

electromagnetic problems and higher accuracy and convergence rate have been achieved. 

Consider a Poisson problem governed by 

 2 2(x,y,z) 12 sin(2 )sin(2 )sin(2 )u x y z        (11) 

with boundary condition 

 (x,y) sin(2 )sin(2 )sin(2 )u x y z     (12) 

where ( , , ) [ 0.5,0.5] [ 0.5,0.5] [ 0.5,0.5]x y z       . The analytical solution for this problem is 

available and is shown in Eq. (12). Then, the derivative results of the field variables and the 

convergence of the solutions have been studied in detail, as illustrated in Fig. 8 and Fig. 9. It 

can be found that the SNS-FEM can provide much more accurate results and a higher 

convergence rate compared with the standard FEM. 



 

  
(a) y=-ly/4, z=-lz/4 (b) y=+ly/4, z=-lz/4 

Figure 8.  The derivative results of the field variables 

 
Figure 9.  Error estimation in H1 norm for 3D Poisson equation 
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Figure 10.  The computational model of TEAM Problem 7 

Problem 7 of Testing Electromagnetic Analysis Methods (TEAM) [66]-[67] workshop 

benchmark problems has also been employed to investigate the application of the SNS-FEM 

to practical problems. The computational model is shown in Fig. 10, including an 

asymmetrical conductor with a hole, an exciting coil, and the surrounding air. The 

conductivity of the conducting plate is 3.537×10
7
 S/m and the coil is excited with 2472 

Ampere-Turns at 200 Hz. The magnetic flux density distributed along lines at the middle of 

the exciting coil (A1-B1, y=72 mm) and the conductor (A2-B2, y=144 mm) are shown in Fig. 

11. Fig. 12 shows the eddy current density obtained using the SNS-FEM and FEM at the 

upper surface of the conductor (A3-B3) and the bottom surface of the conductor (A4-B4) 

together with experimental results. It’s obvious that the SNS-FEM can generally achieve quite 

favorable results and matches well with the experimental ones. 



 

  
(a) line A1-B1 (b) line A2-B2 

Figure 11.  Magnetic flux density Bz along certain lines for TEAM Problem 7 

  
(a) line A3-B3 (b) line A4-B4 

Figure 12.  Eddy current density Jy along certain lines for TEAM Problem 7 

Conclusions 

A stable node-based smoothed finite element method with a general form for multiple 

physical problems is presented in this paper. As there is no uncertain parameter introduced in 

this process, it is a fantastic step forward in the way of stabilizing the NS-FEM. The present 

scheme is easy to implement and achieves very high accuracy using the simplest linear 

triangular and tetrahedral elements. The SNS-FEM has been employed to analyze multiple 

physical problems with good adaptability, such as acoustic, heat transfer and electromagnetic 

problems. The results demonstrate that the SNS-FEM can generally provide very accurate 

results and possess super convergence as well as high computational efficiency. All in all, the 

SNS-FEM is very promising in multiple physical problems and is worthy to be extended to 

analyze more physical problems. 

References 

[1] Hughes, T. J. (1987) The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, 
Prentice-Hall, Englewood Cliffs. 

0 0.05 0.1 0.15 0.2 0.25 0.3
-4

-2

0

2

4

6

8
x 10

-3

x(m)

B
z(T

)

 

 

FEM

SNS-FEM

Measured

0 0.1 0.2 0.3
-4

-2

0

2

4

6
x 10

6

x(m)

J y
(A

/m
2
)

 

 

FEM

SNS-FEM

Measured

0 0.1 0.2 0.3
-2

-1

0

1

2

3
x 10

6

x(m)

J y
(A

/m
2
)

 

 

FEM

SNS-FEM

Measured

0 0.05 0.1 0.15 0.2 0.25 0.3
-2

0

2

4

6
x 10

-3

x(m)

B
z(T

)

 

 

FEM

SNS-FEM

Measured



[2] Belytschko, T., Liu, W. K., Moran, B. and Elkhodary, K. (2013) Nonlinear Finite Elements for Continua 
and Structures, Wiley, West Sussex. 

[3] Liu, G. R. and Quek, S. S. (2013) The Finite Element Method: A Practical Course, 2
nd

 edn, Butterworth-
Heinemann, Oxford. 

[4] Liu, G. R. (2009) Meshfree Methods: Moving Beyond The Finite Element Method, 2
nd

 edn,. CRC Press, 
Boca Raton. 

[5] Liu, G. R. and Zhang, G. Y. (2013) The Smoothed Point Interpolation Methods—G Space Theory and 
Weakened Weak Forms, World Scientific, New Jersey. 

[6] Belytschko, T., Lu, Y. Y. and Gu, L. (1994) Element-free Galerkin methods, International Journal for 
Numerical Methods in Engineering 37, 229-256. 

[7] Pian, T. H. and Wu, C. C. (2005) Hybrid And Incompatible Finite Element Methods, CRC Press, Boca 
Raton. 

[8] Liu, G. R. (2009) Meshfree Methods: Moving Beyond the Finite Element Method, 2
nd

 edn, CRCPress, Boca 
Raton, USA. 

[9] Liu, G. R. (2016) An overview on meshfree methods: for computational solid mechanics, International 
Journal of Computational Methods 13, 1630001. 

[10] Liu, G. R. and Nguyen, T. T. (2010) Smoothed Finite Element Methods, CRC press, Boca Raton. 
[11] Chen, J. S., Wu, C. T., Yoon, S. and You, Y. (2001) A stabilized conforming nodal integration for Galerkin 

mesh-free methods, International Journal for Numerical Methods in Engineering 50, 435-466. 
[12] Chen, J. S., Yoon, S. and Wu, C. T. (2002) Non-linear version of stabilized conforming nodal integration 

for Galerkin mesh-free methods, International Journal for Numerical Methods in Engineering 53 , 2587-
2615. 

[13] Liu, G. R., Dai, K. Y. and Nguyen, T. T. (2007) A smoothed finite element method for mechanics problems, 
Computational Mechanics 39, 859-877. 

[14] Liu, G. R., Nguyen, T. T., Dai, K. Y. and Lam, K. Y. (2007) Theoretical aspects of the smoothed finite 
element method (SFEM), International Journal for Numerical Methods in Engineering 71, 902-930. 

[15] Liu, G. R. (2008) A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin 
formulation of a wide class of computational methods, International Journal of Computational Methods 5, 
199-236. 

[16] Liu, G. R. (2009) On G space theory International Journal of Computational Methods 6, 257-289. 
[17] Liu, G. R. (2010) AG space theory and a weakened weak (W2) form for a unified formulation of compatible 

and incompatible methods: Part I theory, International Journal for Numerical Methods in Engineering 81, 
1093-1126. 

[18] Liu, G. R. (2010) AG space theory and a weakened weak (W2) form for a unified formulation of compatible 
and incompatible methods: Part II applications to solid mechanics problems, International Journal for 
Numerical Methods in Engineering 81, 1127-1156. 

[19] Zeng, W. and Liu, G. R. (2016), Smoothed Finite Element Methods (S-FEM): An Overview and Recent 
Developments, Archives of Computational Methods in Engineering, 1-39. 

[20] Dai, K. Y. and Liu, G. R. (2007) Free and forced vibration analysis using the smoothed finite element 
method (SFEM), Journal of Sound and Vibration 301, 803-820. 

[21] Cui, X. Y., Liu, G. R., Li, G. Y., Zhao, X., Nguyen-Thoi, T. and Sun, G. Y. (2008)  A smoothed finite 
element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. Computer 
Modeling in Engineering and Sciences 28, 109-125. 

[22] Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H. and Lam, K. Y. (2009) A node-based smoothed finite 
element method (NS-FEM) for upper bound solutions to solid mechanics problems, Computers & Structures 
87, 14-26. 

[23] Nguyen-Thoi, T., Liu, G. R. and Nguyen-Xuan, H. (2009) Additional properties of the node-based smoothed 
finite element method (NS-FEM) for solid mechanics problems, International Journal of Computational 
Methods 6, 633-666. 

[24] Wu, S. C., Liu, G. R., Zhang, H. O., Xu, X. and Li, Z. R. (2009) A node-based smoothed point interpolation 
method (NS-PIM) for three-dimensional heat transfer problems, International Journal of Thermal Sciences 
48, 1367-1376. 

[25] Liu, G. R., Chen, L., Nguyen-Thoi, T., Zeng, K. Y. and Zhang, G. Y. (2010) A novel singular node-based 
smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems, International 
Journal for Numerical Methods in Engineering 83, 1466-1497. 

[26] Cui, X. Y., Lin, S. and Li, G. Y. (2011), Nodal integration thin plate formulation using linear interpolation 
and triangular cells, International Journal of Computational Methods 8, 813-824. 

[27] Liu, G. R., Nguyen-Thoi, T. and Lam, K. Y. (2009) An edge-based smoothed finite element method (ES-
FEM) for static, free and forced vibration analyses of solids, Journal of Sound and Vibration 320, 1100-
1130. 

[28] Cui, X. Y., Liu, G. R., Li, G. Y., Zhang, G. Y. and Sun, G. Y. (2009) Analysis of elastic–plastic problems 
using edge-based smoothed finite element method, International Journal of Pressure Vessels and Piping 86, 
711-718. 



 

[29] Cui, X., Liu, G. R., Li, G. Y., Zhang, G. and Zheng, G. (2010) Analysis of plates and shells using an edge-
based smoothed finite element method, Computational Mechanics 45, 141-156. 

[30] Chen, L., Rabczuk, T., Bordas, S. P. A., Liu, G. R., Zeng, K. Y. and Kerfriden, P. (2012) Extended finite 
element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth, Computer 
Methods in Applied Mechanics and Engineering 209, 250-265. 

[31] Zeng, W., Liu, G. R., Kitamura, Y. and Nguyen-Xuan, H. (2013) A three-dimensional ES-FEM for fracture 
mechanics problems in elastic solids, Engineering Fracture Mechanics 114, 127-150. 

[32] Cui, X. Y., Hu, X., Wang, G. and Li, G. Y. (2017) An accurate and efficient scheme for acoustic-structure 
interaction problems based on unstructured mesh, Computer Methods in Applied Mechanics and 
Engineering 317, 1122-1145. 

[33] Nguyen-Thoi, T., Liu, G. R., Lam, K. Y. and Zhang, G. Y. (2009) A face-based smoothed finite element 
method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node 
tetrahedral elements, International Journal for Numerical Methods in Engineering 78), 324-353. 

[34] Feng, S., Cui, X. and Li, G. (2014) Thermo-mechanical analyses of composite structures using face-based 
smoothed finite element method, International Journal of Applied Mechanics 6, 1450020. 

[35] Wang, G., Cui, X. Y., Liang, Z. M. and Li, G. Y. (2015) A coupled smoothed finite element method (S-
FEM) for structural-acoustic analysis of shells, Engineering Analysis with Boundary Elements 61, 207-217. 

[36] Feng, S. Z., Cui, X. Y., Li, A. M. and Xie, G. Z. (2016) A face-based smoothed point interpolation method 
(FS-PIM) for analysis of nonlinear heat conduction in multi-material bodies, International Journal of 
Thermal Sciences 100, 430-437. 

[37] Liu, G. R., Nguyen-Thoi, T. and Lam, K. Y. (2008) A novel alpha finite element method (αFEM) for exact 
solution to mechanics problems using triangular and tetrahedral elements, Computer Methods in Applied 
Mechanics and Engineering 197 , 3883-3897. 

[38] Liu, G. R., Nguyen-Thoi, T. and Lam, K. Y. (2009). A novel FEM by scaling the gradient of strains with 
factor α (αFEM), Computational Mechanics 43, 369-391. 

[39] Cui, X. Y., Li, G. Y., Zeng, G. and Wu, S. Z. (2010) NS-FEM/ES-FEM for contact problems in metal 
forming analysis, International Journal of Material Forming 3, 887-890. 

[40] Jiang, C., Zhang, Z. Q., Liu, G. R., Han, X. and Zeng, W. (2015) An edge-based/node-based selective 
smoothed finite element method using tetrahedrons for cardiovascular tissues, Engineering Analysis with 
Boundary Elements 59, 62-77. 

[41] Zeng, W., Liu, G. R., Li, D. and Dong, X. W. (2016) A smoothing technique based beta finite element 
method (βFEM) for crystal plasticity modeling, Computers & Structures 162, 48-67. 

[42] Chen, L., Zhang, Y. W., Liu, G. R., Nguyen-Xuan, H. and Zhang, Z. Q. (2012), A stabilized finite element 
method for certified solution with bounds in static and frequency analyses of piezoelectric structures, 
Computer Methods in Applied Mechanics and Engineering 241, 65-81. 

[43] Beissel, S. and Belytschko, T. (1996) Nodal integration of the element-free Galerkin method, Computer 
Methods in Applied Mechanics and Engineering 139, 49-74. 

[44] Zhang, Z. Q. and Liu, G. R. (2010) Temporal stabilization of the node-based smoothed finite element 
method and solution bound of linear elastostatics and vibration problems, Computational Mechanics 46, 
229-246. 

[45] Feng, H., Cui, X. Y., Li, G. Y. and Feng, S. Z. (2014) A temporal stable node-based smoothed finite element 
method for three-dimensional elasticity problems, Computational Mechanics 53, 859-876. 

[46] Wang, G., Cui, X. Y. and Li, G. Y. (2015) Temporal stabilization nodal integration method for static and 
dynamic analyses of Reissner–Mindlin plates, Computers & Structures 152, 125-141. 

[47] Xu, X., Gu, Y. and Liu, G. (2013) A hybrid smoothed finite element method (H-SFEM) to solid mechanics 
problems, International Journal of Computational Methods 10 , 1340011.  

[48] Li, E., He, Z. C., Xu, X. and Liu, G. R. (2015) Hybrid smoothed finite element method for acoustic 
problems, Computer Methods in Applied Mechanics and Engineering 283, 664-688. 

[49] Chai, Y. B., Li, W., Gong, Z. X. and Li, T. Y. (2016) Hybrid smoothed finite element method for two 
dimensional acoustic radiation problems, Applied Acoustics 103, 90-101. 

[50] Chai, Y., Li, W., Gong, Z. and Li, T. (2016) Hybrid smoothed finite element method for two-dimensional 
underwater acoustic scattering problems, Ocean Engineering 116, 129-141. 

[51] Feng, H., Cui, X. Y. and Li, G. Y. (2016) A stable nodal integration method with strain gradient for static 
and dynamic analysis of solid mechanics, Engineering Analysis with Boundary Elements 62, 78-92. 

[52] Wang, G., Cui, X. Y., Feng, H. and Li, G. Y. (2015) A stable node-based smoothed finite element method 
for acoustic problems, Computer Methods in Applied Mechanics and Engineering 297, 348-370. 

[53] Chai, Y., Li, W., Li, T., Gong, Z. and You, X. (2016) Analysis of underwater acoustic scattering problems 
using stable node-based smoothed finite element method, Engineering Analysis with Boundary Elements 72, 
27-41. 

[54] Cui, X. Y., Li, Z. C., Feng, H. and Feng, S. Z. (2016) Steady and transient heat transfer analysis using a 
stable node-based smoothed finite element method, International Journal of Thermal Sciences 110, 12-25. 

[55] Li, S., Cui, X., Feng, H. and Wang, G. (2017) An electromagnetic forming analysis modelling using nodal 
integration axisymmetric thin shell, Journal of Materials Processing Technology 244, 62-72. 



[56] Cui, X., Li, S., Feng, H. and Li, G. (2017) A triangular prism solid and shell interactive mapping element for 
electromagnetic sheet metal forming process, Journal of Computational Physics 336, 192-211. 

[57] Feng, H., Cui, X. and Li, G. (2017) A stable nodal integration method for static and quasi-static 
electromagnetic field computation, Journal of Computational Physics 336, 580-594. 

[58] Hu, X. B., Cui, X. Y., Feng, H. and Li, G. Y. (2016). Stochastic analysis using the generalized perturbation 
stable node-based smoothed finite element method, Engineering Analysis with Boundary Elements 70, 40-
55. 

[59] Thompson, L. L. (2006) A review of finite-element methods for time-harmonic acoustics, The Journal of the 
Acoustical Society of America 119, 1315-1330. 

[60] Harari, I. (2006) A survey of finite element methods for time-harmonic acoustics, Computer Methods in 
Applied Mechanics and Engineering 195, 1594-1607. 

[61] Babuška, I. M., and Sauter, S. A. (1997) Is the pollution effect of the FEM avoidable for the Helmholtz 
equation considering high wave numbers?, SIAM Journal on Numerical Analysis 34, 2392-2423. 

[62] Ihlenburg, F. and Babuška, I. (1995), Finite element solution of the Helmholtz equation with high wave 
number Part I: The h-version of the FEM, Computers & Mathematics with Applications 30, 9-37. 

[63] Donea, J. and Giuliani, S. (1974), Finite element analysis of steady-state nonlinear heat transfer problems, 
Nuclear Engineering and Design 30, 205-213. 

[64] Parreira, G. F., Silva, E. J., Fonseca, A. R. and Mesquita, R. C. (2006) The element-free Galerkin method in 
three-dimensional electromagnetic problems, IEEE Transactions on Magnetics 42, 711-714. 

[65] Ho, S. L., Yang, S., Machado, J. M. and Wong, H. C. C. (2001) Application of a meshless method in 
electromagnetics, IEEE Transactions on Magnetics 37, 3198-3202. 

[66] Fujiwara, K. and Nakata, T. (1990) Results for benchmark problem 7 (asymmetrical conductor with a hole), 
COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic 
Engineering 9, 137-154. 

[67] Nakata, T., Takahashi, N., Fujiwara, K. and Shiraki, Y. (1990) Comparison of different finite elements for 3-
D eddy current analysis, IEEE Transactions on Magnetics 26, 434-437. 

Biography 

X. Y. Cui received his Ph.D. degree in Mechanical Engineering 

from Hunan University, China, in 2011. He was a joint training 

doctoral students of public-sent graduate at the Centre for 

Advanced Computations in Engineering Science (ACES), National 

University of Singapore, from 2007–2009. He is currently an 

associate professor of Mechanical & Vehicle Engineering in Hunan 

University. He His major research focuses on computational 

methods for the analysis of solids and structures, multiphysics 

problems including electromagnetics, thermotics, and acoustics 

with emphasis on sheet metal forming, hot stamping, and integrated materials and structures 

design. So far, he has authored 61 SCI-indexed journal papers, which have earned more than 

400 citations form others. 

 


