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Abstract 

In this paper, the fracture problem of a functionally graded piezoelectric material strip (FGPM 

strip) containing a crack perpendicular to the interface between an FGPM strip and a 

homogeneous layer is considered. The problem is solved for the laminate that is suddenly 

heated from the surface of the FGPM strip.  The surface of the homogeneous layer is 

maintained at the initial temperature. The crack faces are supposed to be completely insulated. 

Material properties are assumed to be exponentially dependent on the distance from the 

interface. By using the Laplace and Fourier transforms, the thermo-electro-mechanical 

fracture problem is reduced to a singular integral equation, which is solved numerically. The 

stress intensity factors are computed and presented as a function of the normalized time, the 

nonhomogeneous and geometric parameters. 
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Introduction 

The concept of the well-known functionally graded materials (FGMs) can be extended to the 

piezoelectric material to improve its reliability [1]. As a result, it is also important to 

investigate the fracture behavior of functionally graded piezoelectric materials (FGPMs) 

under thermal load, and some interesting results have been reported. For example, Wang and 

Noda [2] treated the thermally induced fracture of a smart functionally graded composite 

structure. The present author has investigated the singular fields around cracks in FGPMs 

under the static thermal loading condition [3-5] and under the thermal shock loading 

condition [6-8]. It was found that by selecting the material constants appropriately, the steady 

stress and electric displacement intensity factors can be lowered substantially. Moreover, the 

overshooting phenomenon of the stress and electric displacement intensity factors was 

observed in a homogeneous piezoelectric strip [9, 10] and in an FGPM strip [6-8]. 

 

On the other hand, piezoelectric composites have been used in a wide variety of applications 

including vibration control and actuators. These systems can be achieved by incorporating a 

thin piezoelectric layer into a structural system. Several kinds of piezoelectric actuators have 

been designed. Uchino et al. [11] fabricated a monomorph actuator made from semi-

conductive piezoelectric ceramics.  

 

In this paper, we focused on the transient thermal fracture problem of monomorph actuators 

using an FGPM strip. The analytical model of the monomorph actuator consists of an FGPM 

strip and a homogeneous elastic layer. The problem of the normal crack in the FGPM strip is 

analyzed under transient thermal loading conditions. Material properties are exponentially 

dependent on the distance from the interface between the FGPM strip and the homogeneous 



elastic layer. The superposition technique is used to solve the governing equations. The 

transient temperature and transient thermal stress in an un-cracked FGPM strip are calculated 

by the Laplace transform, and a numerical method is employed to obtain time-dependent 

solutions by way of a Laplace inversion technique [12]. The obtained thermal stress is used as 

the crack surface tractions with opposite sign to formulate the mixed boundary value problem. 

By using the Fourier transform techniques [13, 14], the electromechanical problem is reduced 

to a singular integral equation, which are solved numerically [15]. The stress intensity factors 

are computed and presented as functions of the normalized time, the nonhomogeneous and 

geometric parameters.  

Formulation of the problem 

Consider a strip of FGPM of thickness 
1

h  containing a finite crack bonded to an elastic layer 

of thickness 
2

h with the rectangular Cartesian coordinate system  x y z, ,  as shown in Figure 1. 

The crack of length 2c  is located along z -axis from a  to b   1
2 0b a c a b h    , . The 

piezoelectric strip is poled in the z -direction and is in the plane strain conditions 

perpendicular to the y -axis. It is assumed that initially the medium is at the uniform 

temperature T

 and is suddenly subjected to a uniform temperature rise 

0
T H t( )  along the 

boundary 
1

z h , where H t( )  is the Heaviside step function and t  denotes time. The 

temperature along the boundary 
2

z h   is maintained at T

. The crack faces remain thermally 

and electrically insulated. 

 

The material property parameters are taken to vary continuously along the z -direction inside 

the FGPM strip. The material properties of FGPM, such as the elastic stiffness constants 

kl
c z( ) , the piezoelectric constants 

kl
e z( ) , the dielectric constants 

kk
z ( ) , the stress-temperature 

coefficients 
kk

z ( ) , the coefficient of heat conduction 
x

z ( ) ,
z

z ( ) and the pyroelectric constant 

z
p z( ) , are one-dimensionally dependent as 
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where  ,  and  are positive or negative constants, and the subscript 0 indicates the 

properties at the plane 0z  . For some materials, the thermal diffusivity 0  indeed doesn’t 

vary dramatically, then 0  is assumed to be a constant. The material properties of the 

homogeneous elastic layer are the elastic stiffness constants E

kl
c , the stress-temperature 

coefficients E

kk
 , the coefficient of heat conduction E  and the thermal diffusivity 

0

E . The 

superscript E  denotes the physical quantities of the homogeneous elastic layer. 

 

The crack problem may be solved by superposition. In the problem considered here, since the 

heat conduction is one-dimensional and straight cracks do not obstruct the heat flow in this 

arrangement, determination of the temperature distribution and the resulting thermal stress 

would be quite straightforward and the related crack problem would be one of model I. We 

suppose that each crack is opened under the action of the same distribution of the internal 



pressure 
0

T z t ( , ) , where 
0

T z t ( , )  is the thermal stress induced by the time-dependent 

temperature change. In the following, the subscripts x y z, ,  will be used to refer to the 

direction of coordinates. 

 

 
Figure 1 : Geometry of the crack problem in a functionally graded piezoelectric laminate 

 

Temperature distribution and thermal stress in the un-cracked strip 

By using the Laplace transform method, the temperatures *

1( ) (0 )T z p z h    and 

*

2( ) ( 0)ET z p h z     in the Laplace transform plane can be easily obtained as follows:   
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where the superscript   denotes the physical quantities in the Laplace domain and  p  is the 

Laplace parameter. The functions 
ij  and ( , 1,2)ijD i j   are given in Appendix A. Thus the 

temperature fields ( )T z t  1(0 )z h   and 
2( ) ( 0)ET z t h z     in the time domain may be 

evaluated as:  
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The temperature fields ( )T z t  1(0 )z h   and 
2( ) ( 0)ET z t h z     can be found from Eq. 

(3) by using the numerical Laplace inversion scheme [12]. 

 

Once 1( ) (0 )T z t z h   and 
2( ) ( 0)ET z t h z     is known, the thermal stress component 

1( ) (0 )T

xx z t z h     can be also obtained by the following equation:  
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where the superscript T  denotes the thermally induced quantities, ( )T

xu z t  is the displacement 

component and 
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Similarly, 
2( ) ( 0)ET

xx z t h z      is given by  
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where ( )ET

xu z t  is the displacement component and 
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The compatibility conditions that need to be satisfied become  
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where ( )TA t  and ( )TB t  are unknown functions to be obtained from boundary conditions for 

the laminate. If the laminate is unconstrained along its boundaries, we have  
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In the crack problem under considered, the equal and opposite of the stress 

0 ( ) ( ) ( )T T

xxz t z t a z b       given by Eq. (4) will be used as the crack surface traction and 

the laminate will be assumed to be under plane-strain conditions. 

 

The crack problem  

Referring to Figure 1, it is assumed that 0x   is a plane of symmetry regarding to geometry 

and loading conditions. Thus, in analyzing the problem it is sufficient to consider one-half 

( 0 x  ) of the FGPM strip and the homogeneous elastic layer only. Also, through a 

proper superposition, the problem is assumed to have been reduced to a perturbation problem 

in which the crack surface tractions are the only nonzero external loads and the stresses in the 

layered strip vanish for x .  

 

Taking Eqs. (1) into consideration, the governing equations for the electromechanical fields 

of the FGPM strip and the homogeneous elastic layer may then be expressed as follows:  
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The boundary conditions can be written as  
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By using the Fourier integral transform technique, the stress intensity factors IA ( )K t  at z a  

and IB( )K t  at z b  may be evaluated as   
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In Eqs.(20) and (21), the constant Z  is given in Appendix B and the function ( , )u t is given 

by 
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where 1 2    for 10 b h   (embedded crack) and 1 2     for 1b h  (edge crack), and 

( ) 2 ( ) 2b a u b a       . The function ( , )G t  is the solution of the following singular 

integral equation obtained from the mixed boundary conditions (14) with the boundary 

conditions (15)-(19). 
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In the integral equation, the kernel functions ( , ) ( 1, 2,3, 4)iM t i  are also given in Appendix B. 

The singular integral equation (23) for 10 b h    (embedded crack) is to be solved with the 

following subsidiary conditions obtained from the second mixed boundary condition of 

Eqs.(14). 
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Numerical result and discussion 

For the numerical calculations, the properties of cadmium selenide [16] are used as the 

properties of the FGPM strip at the plane 0z  . 
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Since the values of the coefficients of heat conduction for cadmium selenide could not be 

found in the literature, the value 2 1 1 5x z        is used. The normalized 

nonhomogeneous parameters 1h , 1h , 1h  and the thermal diffusivities 
0  and 

0

E  are 

assumed to be 1 1 1h h h     and 
0 0

E  . The properties of titanium (Ti) and brass with 

following properties are also used as the properties of the elastic layer.  
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where 
E  is the coefficient of linear thermal expansion. The values of  ,   and 

E  of 

titanium (Ti) and brass are  
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First of all, we consider the effect of the thickness ratio 2 1/h h  on the stress intensity factors 

IAK  and 
IBK  for the Ti elastic layer. Figures 2(a) and 2(b) show the normalized stress 

intensity factors 1 2

IA IB 110 0( ) ( )K K T c     versus time t  for 
2 1h h  1.0, 0.5 and →0.0. It is 

supposed that the crack length parameter is 1 0.1c h  , the crack location parameter is 

1( ) / 2 0 5a b h    and the nonhomogeneous parameter is 1 0.0h  . In the following figures, 

the time t  is represented through the dimensionless Fourier number defined by  
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Note that the values of those intensity factors rise sharply at first, reach maximum values and  

then decrease and approach the static values with increasing F . The results for the case of 

2 1 0 0h h    are coincident with the results of the previous paper [3]. The magnitudes of 
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IA IB 110 0( ) ( )K K T c     depend remarkably on 2 1/h h . The normalized maximum values  of 

the stress intensity factors for 2 1/ 0.5h h   are larger than those for 2 1/h h =1.0 and 

2 1 0 0h h   . 
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Figure 2(a). The effect of the thickness 

ratio 2 1/h h  on the stress intensity factor 

IAK  for the Ti layer (embedded crack). 
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Figure 2(b). The effect of the thickness 

ratio 2 1/h h  on the stress intensity factor 

IBK  for the Ti layer (embedded crack). 

 



Next, we examine the effect of the crack length parameter 1c h  on the time dependences of 

the stress intensity factors 
IAK  and 

IBK  for the Ti elastic layer. The normalized stress 

intensity factors 1 2

IA IB 110 0( ) ( )K K T c     are plotted versus F  for 1 0.1c h  , 0.2 and 0.3 

with 
2 1h h  1.0, 1( ) / 2 0 5a b h    and 1 2.0h   in Figures 3(a) and 3(b). The same 

tendencies as the cases shown in Figures 2(a) and 2(b) are observed. For the case of 

1/ 0.3c h  , the value of 1 2

IB 110 0 ( )K T c    at some time becomes negative, and the crack 

would be closed, because the stress 
0 ( ) ( )T z t a z b     on the surfaces of the crack becomes 

compressive. 
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Figure 3(a). The effect of the crack length 

1/c h  on the stress intensity factor 
IAK  for 

the Ti layer (embedded crack). 
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Figure 3(b). The effect of the crack length 

1/c h  on the stress intensity factor 
IBK  for 

the Ti layer (embedded crack).  

 

Thirdly, we consider the effect of the crack location parameter 1( ) / 2a b h , the 

nonhomogeneous parameter 1h  and the material properties of the elastic layer. Figures 4(a) 

and (b) indicate the time dependences of the stress intensity factors 
IAK  and 

IBK  for the Ti 

elastic layer. It is supposed that the geometric parameters are 1 0.1c h  , 2 1h h  1.0 and 

1( ) / 2a b h =0.2, 0.5 and 0.8. In these figures, the solid, dashed and dotted lines indicate the 

results for the 1h  2.0, -2.0 and 0.0, respectively. Figures 5(a) and (b) are the same as 

Figures 4(a) and (b) for the Brass elastic layer. For the case of 1( ) / 2a b h =0.8, we can also 

see the crack contact phenomenon. The values of the stress intensity factors for the Brass 

layer are much larger than those for the Ti layer. The most remarkable difference between the 



results for the Ti elastic layer and the Brass layer is whether the time dependences of the 

stress intensity factors have the peak value or not. For the case of the Brass layer, the time 

dependences of 1 2

IA IB 110 0( ) ( )K K T c    do not have the peak value. 
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Figure 4(a). The effect of the crack 

location 1( ) / 2a b h  and the 

nonhomogeneous parameter 1h  on the 

stress intensity factor 
IAK  for the Ti layer 

(embedded crack). 
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Figure 4(b). The effect of the crack 

location 1( ) / 2a b h  and the 

nonhomogeneous parameter 1h  on the 

stress intensity factor 
IBK  for the Ti layer 

(embedded crack). 

 

0 0.1 0.2 0.3 0.4 0.5
-0.1

0

0.1

0.2

0.3

F

K
IA

/
1

1
0
T

0
(

c
)1

/2

:h1= 2.0

:h1= 0.0

:h1=-2.0

c/h1=0.1

h2/h1=1.0

(a+b)/2h1=0.2

(a+b)/2h1=0.5

(a+b)/2h1=0.8

Brass

 

Figure 5(a). The effect of the crack 

location 1( ) / 2a b h  and the 

nonhomogeneous parameter 1h  on the 

stress intensity factor 
IAK  for the Brass 

layer (embedded crack).  
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Figure 5(b). The effect of the crack 

location 1( ) / 2a b h  and the 

nonhomogeneous parameter 1h  on the 

stress intensity factor 
IBK  for the Brass 

layer (embedded crack). 

 



Finally, we consider the case of 1b h  (edge crack). Assume the top surface of the strip is 

cooled from initial temperature IT  to I 0 0( 0)T T T  suddenly, the normalized stress 

intensity factor 1 2

IA 110 0| | (2 )K T c    is plotted versus F for the 1h 2.0, -2.0 and 0.0 with 

12 / 0.2c h  in Figure 6 and for 12 / 0.2, 0.4c h   with 1 2.0h  in Figure 7, respectively. The 

normalized value of stress intensity factor decreases with decreasing 1h  and 12 /c h . The 

influence of the material nonhomogeneity on the stress intensity factor is the same as the 

results for the embedded crack shown in Figure 4(a). For the case of large F, the stress 

intensity factor may be negative and the crack contact occurs.  
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Figure 6. The effect of the 

nonhomogeneous parameter 1h  on the 

stress intensity factor 
IAK  for the Ti layer 

(edge crack). 
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Figure 7. The effect of the crack length 

12 /c h  on the stress intensity factor 
IAK   

for the Ti layer  

(edge crack).  

 

CONCLUSION  

The transient fracture problem of the cracked functionally graded piezoelectric strip bonded 

to the homogeneous elastic layer is studied. The effects of the thickness of the elastic layer, 

the crack length, the crack location and the material nonhomogenity on the fracture behavior 

are considered. The following facts can be found from the numerical results.  

 

(1) The distinct overshooting phenomenon for the case of the Ti elastic layer can be observed 

and this fact may suggest the importance of these transient analyses. The effect of the 

thickness of the elastic layer on the time dependence of the stress intensity factors is large 

(Figs. 2(a) and 2(b) ).  



 

(2) The maximum values of the stress intensity factors and the static values of them 

indicating the inertial effect increase with increasing 1c h . For the case of 1 0.3c h  , the 

stress intensity factor IBK  becomes negative (Figs. 3(a) and 3(b) ). 

 

(3) While the time dependences of the stress intensity factors for the Ti elastic layer have the 

peak values, those for the Brass layer do not have the peak values. Generally, the decrease 

of 1h  is beneficial for reducing the stress intensity factors. However, the static values of 

the stress intensity factors for the Brass elastic layer decreases with increasing 1h . For 

the case of the crack near the heating surface, the crack contact phenomenon can be found 

(Figs. 4(a), 4(b) and 5(a), 5(b)).  

 

(4) In some cases, the stress intensity factors under the thermal load become negative and the 

results have no physical meaning. However, when the thermal load is combined with the 

mechanical load which induces the positive stress intensity factor, those results can be 

used effectively.  

 

Appendix A 

The functions ( , 1 2)ij i j    are  

 

1 2

11 0 21

0

1 2

12 0 22

0

,
2

,
2

E

E

p

p


  




  







 
     
 


  
      

  

                                       (A.1) 

 

where 

 

1 2
2

0

04

p






 
  
 

                                                   (A.2) 

 

 

 

 



The functions ( , 1 2)ijD i j    are  
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Appendix B  

The constant Z  is given by  
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The kernel functions ( ) ( 1 2 3 4)iM z i      are  
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In Eqs. (B.2), (B.7), (B.8) and (B.9), the functions 
1 1 ( )j j s  , 

1 ( )ja s  and 
1 ( ) ( 1 2 3)jb s j     

are given in Appendix A of the previous paper [7], and the functions 
2 2 ( )j j s  , 

2 ( )ja s  and 

2 ( ) ( 1 2 6)jb s j     are given in Appendix B of the previous paper [4].The functions 
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