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Abstract 

In this paper, a scaling function constructed using special filter coefficients is used for 
solution of nonlinear singular boundary value problems. The basis functions in interval 
originated from the newly constructed scaling function are used in function approximation, 
Galerkin method and iteration approach are used for solution. Some numerical examples are 
given to demonstrate the validity of the technique. Numerical results prove that the new basis 
functions have good approximation ability and the present method is very efficient and highly 
accurate in solving nonlinear singular boundary value problems. 
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Introduction 

Many problems in applied mathematics leads to singular boundary value problems which 
arise in a variety of differential applied mathematics and physics such as gas dynamics, 
nuclear physics, chemical reaction, studies of atomic structures and atomic calculations. 
These problems also occur very frequently in the study of electrohydrodynamics and the 
theory of thermal explosions. There is a vast amount of literature on numerical solutions on 
singular boundary value problems. Some of the well-known techniques used in solving these 
problems are finite differences method[1][2], B spline method[3][4], sinc method[5], and 
reproducing kernel space method[6,7].  
Wavelet is a powerful mathematics tool in solving many problems in science and engineering. 
In recent years, there has been an increasing interest in wavelet-based methods due to their 
successes in some applications. Wavelet-based numerical method has been developed in 
recent years. At present, there are mainly three kinds of wavelet-based numerical methods: 
wavelet finite element method[8][9], wavelet collocation method[10][11]and wavelet-
Galerkin method[12][13]. In these methods, wavelet scaling functions and wavelet functions 
are used as basis functions in functions approximation.  
The main aim of this paper is to introduce a new scaling function constructed using special 
filter coefficients to solve nonlinear singular boundary value problems. The basis functions in 
interval originated from the new scaling function are directly used to approximate the 
unknown functions. Using the Galerkin discretization method and iteration approach, the 
problem will be reduced to a set of algebraic equations. Some numerical examples are given 
to illustrate the stability and the effectiveness of the present method. 

2. The nonlinear singular boundary value problems  

In this paper, we consider following nonlinear singular boundary value problems The 
m degree B-spline is defined as 

( ) ( ) ( ) ( )
p

a x y y b x M y f x
x

   
 

(1) 

Subject to the boundary conditions  

(0) 0 (1)y y     (2) 

where 0 1x  , M are nonlinear functions of y , ( )a x , ( )b x and ( )f x are given continuous 

functions, and ,p  are finite constants. 



3. Functions approximation by new scaling functions  

According to the traditional theory of wavelets, the so-called scaling function ( )x and 

wavelet function ( )w x  both satisfy two-scaling relation 
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(3) 

The kh  and kg are called filter coefficients. The dual scaling function ( )x  and wavelet 

( )w x also generate a multiresolution analysis. They satisfy refinement relations like (3) with 

coefficients 
kh  and kg , respectively. From the theory of wavelets and filter banks, the 

conditions for perfect reconstruction of dual filters kh , kg , 
kh  and kg can be stated as 

1 1( ) ( ) ( ) ( ) 2h z h z g z g z    
1 1( ) ( ) ( ) ( ) 0h z h z g z g z      

(4) 

where, ( )h z  denotes the z-transform of kh  
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The lifting scheme [14][15]demonstrates that the new filters can be constructed as follows 
new 2( ) ( ) ( ) ( )g z g z h z s z   

new 2( ) ( ) ( ) ( )h z h z g z s z   

(6) 

and the dual lifting scheme can be expressed as  
new 2( ) ( ) ( ) ( )h z h z g z t z   
new 2( ) ( ) ( ) ( )g z g z h z t z   

(7) 

where, ( )s z and ( )t z are the arbitary Laurent polynomials. The lifting scheme tell us that one 

can start with the lazy wavelet and use lifting to build filters with particular properties. We 

can obtain scaling functions and wavelet functions which are suitable for numerical 

simulation from special filters. In this paper, the filter 
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is used to construct the scaling functions ( )x . It is obvious that the support of ( )x  is 

supp ( ) [0,5]x   (9) 

From the two-scaling relation (1), the following equation can be obtained 

M    (10) 

where,  is a vector 
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M is a 4ⅹ4 matrix 
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From Eq.(10) and additional condition (1) (2) (3) (4) 1       , the values of 

( ), 1,2,3,4i i  can be obtained. Then, ( ), ,
2 j

k
j k   can be easily evaluated using the two-

scaling relation (3) and ( )i . Furthermore, the ( ), ( ), ,
2 2j j

k k
j k    can be obtained by the 

similar method. Figure 1 shows the scaling function ( )x and its first derivative and second 

derivative. The scaling functions constructed above can be used as basis functions to 

approximate the function u defined on interval[0,1] . 
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where, , ( ) ( )i k x ix k   and i denotes the scale in approximation. The support of , ( )i k x is 

,
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In order to apply boundary conditions effectively, we use the boundary scaling functions in 

this paper. For 5i  , the left boundary scaling functions are defined as 
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The right boundary scaling functions 
R

, ( ), 4, 3, 2, 1i i k x k       can be constructed by similar 

method. Then in approximation Eq.(15), the ordinary scaling functions , ( )i k x  and 

, ( ), 4, 3, 2, 1i i k x k        are respectively replaced by boundary scaling functions  
L

, ( )i k x  

and 
R

, ( ), 4, 3, 2, 1i i k x k       . For the sake of uniform expressions, the subscript L and R in 

boundary scaling functions will omit in the following part. The four left boundary scaling 

functions with 5i  are shown in Figure 2. 

4. Numerical implementation 

In order to solve the Eq.(1), we can approximate the functions ( )y x  as follows 
4
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where ( )k x are corresponding to , 5( )i k x   discussed in section 3. Introducing (20) into Eq.(1) 

and using Galerkin discretization method, we have 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The basic scaling function ( )x and its first and second derivative 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The four left boundary scaling functions with 5i   
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where 1,2, 4j i  . From (21), we can obtain a set of algebraic equations  

Kc = f  (22) 

where  
1

0
( , ) ( ( ) ( ) ( )) ( )i i j

p
i j a x x x x dx

x
    K  , 1,2, 4i j i   (23) 
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(24) 

1

0
( ) ( ( ) ( ) ( )) ( )jj f x b x M y x dx f ,  1,2, 4j i   (25) 

Because there is nonlinear part in Eq. (22), we should use iteration approach for solution. In 

this case, we have 
( 1) ( )n n

Kc = f  0,1,n   (26) 

where, n is the iteration number and 

 (0) c 0  (27) 

The computation of 
( )n

f is as follows 
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and 
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5  Numerical examples 

In this section, we will apply the present new method to solve some nonlinear singular 

boundary value problems. The computed results are compared with the exact solutions. 

Example1 

2 4 22
2 7 0 1y y y x x x

x
          (30) 

Subject to the boundary conditions 

(0) 0 (1) 0y y    (31) 

The exact solution of (30) is 2( ) 1y x x  . Table 1 shows the comparison of exact solution and 

numerical results of ( )y x . The scale used in approximation is 30i  , and the iteration 

number is 8n  . It can be found that the results evaluated by present method are highly 

accurate. 

Example2 

52
0 0 1y y y x

x
       (32) 

Subject to the boundary conditions 

3
(0) 0 (1)

2
y y    (33) 

The exact solution of (32) is 
2

( ) 1/ 1
3

x
y x   . Table 2 shows the comparison of exact 

solution and numerical results of ( )y x . The scale used in approximation is still 30i  . The 

iteration number is 10n  , and the numerical results are highly accurate.  
 

 

 



Table 1.  The comparison of exact and numerical results of ( )y x for example 1 

x  Exact results Numerical results Absolute error 

0 1.0 0.99993999595962 6.0E-005 

0.1 0.99 0.98995337910760 4.7E-005 

0.2 0.96 0.95996029190128 4.0E-005 

0.3 0.91 0.90996593278944 3.4E-005 

0.4 0.84 0.83997127834294 2.9E-005 

0.5 0.75 0.74997635685368 2.4E-005 

0.6 0.64 0.63998121355224 1.9E-005 

0.7 0.51 0.50998591179173 1.4E-005 

0.8 0.36 0.35999053476071 9.5E-006 

0.9 0.19 0.18999518777879 4.8E-006 

1.0 0.0 0.0 0.0 

 

Table 2. The comparison of exact and numerical results of ( )y x  for example 2 

x  Exact results Numerical results Absolute error 

0 1.0 0.99995346837571 4.7E-005 

0.1 0.9983375 0.99829788110237 4.0E-005 

0.2 0.9933993 0.99336315548509 3.6E-005 

0.3 0.9853293 0.98529691402213 3.2E-005 

0.4 0.9743547 0.97432681393413 2.8E-005 

0.5 0.9607689 0.96074595606071 2.3E-005 

0.6 0.9449112 0.94489331093333 1.8E-005 

0.7 0.9271455 0.92713268820308 1.3E-005 

0.8 0.9078413 0.90783318696177 8.1E-006 

0.9 0.8873565 0.88735271237105 3.8E-006 

1.0 0.8660254 0.86602540378444 0.0 

Conclusions 

In this paper, a scaling function constructed using special filter coefficients is used for 

solution of nonlinear singular boundary value problems. The basis functions in interval 

originated from the new scaling function are directly used in function approximation, and the 

Galerkin discretization method and iteration approach are used for solution. Numerical results 

demonstrate that the new basis functions are suitable for numerical simulation and the present 

solution method is very efficient and highly accurate in solving nonlinear singular boundary 

value problems.  
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