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Abstract
As a category of promising material, the membrane of dielectric elastomer (DE) sandwiched
between two compliant electrodes has the capacity for converting the electrical energy into
mechanical energy, vice versa. Owing to the large deformation produced by relatively small
stimulations, this elastomer is also component to function as a generator. Investigations on
the dielectric elastomer generator (DEG) have achieved wide attention recently. The previous
studies have indicated that the performance of DE depends on the major dissipation processes
including viscoelasticity and current leakage and also varies with temperature. However, very
few works take these factors together into consideration when investigating the performance
of DEGs. Therefore, a model that involves the temperature-dependent permittivity and shear
modulus of the DE membrane, viscoelastic relaxation and current leakage is established in
this study. Then, based on a specific Carnot-shape conversion cycle, the performances of the
dissipative generator made of very-high-bond (VHB) elastomer can be discussed at different
sampling temperatures. The parameters characterizing the performances of the DEG include
the energy densities of different kinds and conversion efficiency. Moreover, the mechanisms
of typical failure modes including material rupture, loss of tension (LT), electrical breakdown
(EB) and electromechanical instability (EMI) are studied with the influences of temperature
to ensure that the generator is operated in an allowable area. It can be concluded from the
numerical results that the temperature plays an important role in the performance of the DEG,
which could possibly improve its conversion efficiency.

Keywords: Dielectric elastomer generators (DEGs); Temperature; Failure modes; Dissipation
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1. Introduction

The dielectric elastomer (DE) which appears as a thin membrane is often coated with softly
conductive electrodes on both sides in thickness [1]-[4]. When subject to a voltage through its
thickness, the membrane of DE will shrink in thickness and expand in area due to Maxwell
stress, converting the electrical energy into mechanical energy, which can be exploited as an
actuator [5]-[7]. Owing to the large deformation caused by small mechanical forces and an
appropriate voltage, the DE membrane is also competent to function as a generator [8]-[10].
When a membrane of DE operates under cyclic loadings, the reduction in tensile force will
lead to the enhancement in both the thickness and voltage through the electrodes, converting
the mechanical energy into electrical energy. Nowadays, there is an increasing attention on
the field of dielectric elastomer generator (DEG). For instance, a heel-strike generator made
of DE has been implanted into shoes [11], a membrane device placed behind the knee is able



to recycle the energy from human motion [12], and even a wave power generator made of DE
has been developed for harvesting renewable energy [13].

Being a generator, except the unavoidable dissipation processes including viscoelasticity and
current leakage [14], the DE membrane may lose efficacy due to multiple failure modes, such
as material rupture, loss of tension (LT), electrical breakdown (EB), and electromechanical
instability (EMI) [15]-[22], which may restrict the area of allowable states during the energy
harvesting. As a result, it is of great importance to study the mechanism of failure modes for
advanced development of DEGs.

Most of the previous studies on the electromechanical performance of DE were implemented
in an isothermal environment but ignored the influences of temperature [23][24]. However,
according to the experiments on very-high-bond (VHB) elastomers [25][26], there is a strong
dependency between the relatively permittivity and the planar stretches of the DE membrane
at different operating temperatures. The shear modulus of the membrane of DE is also proved
to be related with temperature and the relationship will not be described by the T/T0 factor
anymore. To the authors’ best knowledge, there is few research on the effects of temperature
on both electromechanical performance and energy conversion of DEGs.

In this study, the most promising DE material, VHB 4910, which has high electromechanical
conversion efficiency and can produce a large deformation within a wide temperature range
(233~363 K) [26] is selected to study the effect of temperature on the performance of DEGs.
For the first time, an integrated model that combines the temperature-dependent permittivity
and shear modulus, current leakage and viscoelasticity is established to simulate the energy
harvesting. Afterwards, the mechanism and processes of a four-stroke conversion cycle for
the DEG is introduced. Based on the cyclic loads, different energies as well as the conversion
efficiency can be figured out. By comparing the numerical results at different temperatures,
one can summarize the temperature influence on the DEG. At the same time, common failure
modes of the DE membrane are taken into consideration to ensure the allowable states.

2. Governing equations for the dissipative DEG

To focus on the influences of temperature on the electromechanical performance of the DEG,
the governing equations for the membrane of DE should be first derived and can be separated
into the following parts: (1) the free energy function of DE with consideration of viscoelastic
relaxation and temperature-related factors; (2) equations of the plane-parallel capacitor; (3)
equations of the current leakage. These segments constitute the integrated equations of state
for the DEG.

2.1. Free energy function of the DE membrane

A fundamental configuration is utilized to conduct the simulation, in which a thin membrane
of VHB 4910 is sandwiched between two electrodes with negligible electrical resistance and
mechanical stiffness. Subject to in-plane biaxial forces P1 and P2 and a voltage Φ in thickness,
the membrane deforms from its initial dimensions L1×L2×H to the current dimensions l1×l2×h
with charges of opposite sign ±Qp generated on the electrodes at a fixed temperature T, as
demonstrated in Fig. 1. As a homogeneous and isotropic elastomer, the stretches in plane can
be defined as λi=li/Li (i=1,2), while the stretch in thickness direction can be substituted by
λ1-1λ2-1 due to the nearly-incompressibility of the membrane [2][27]. Similarly, the nominal
stresses in plane are defined by s1=P1/(L2H), s2=P2/(L1H). In electrical category, = /E H



and 1 2= / ( )pD Q LL represent the nominal electric field and the nominal electric displacement,
respectively.

(a) (b)
Figure 1. Schematic of the DE membrane in (a) undeformed state; (b) deformed state, subject

to forces and a voltage at a fixed temperature T;

Due to obvious viscoelasticity, the membrane of DE will no longer show the simple elasticity
during the deformation. According to the recent studies [28]-[31], the viscoelastic relaxation
can be simulated by a nonlinear rheological model, as illustrated in Fig. 2. The viscoelastic
model consists of two parallel networks: spring A in parallel with spring B and a dashpot with
a viscosity η. Factors μA and μB represent the shear moduli of the springs which vary with
temperature, JA and JB are the dimension parameters referring to the dependence on chain
extension limits of the elastomer. It is assumed that JA and JB are independent of temperature.

Figure 2. Viscoelasticity of the DE membrane is modeled by a rheological model.

In the rheological model, the stretch of the DE membrane in a certain direction is equal to the
net stretches in both networks. For spring A, the stretch in it is the same as the stretch of the
membrane λ. While the stretch of the spring B is described by λe, which cooperates with the
inelastic stretch ξ due to the dashpot. A well-established rule [14] is chosen to represent the
relationship between these stretches, λ=λeξ.

In order to measure the mechanical work done by the dashpot, that is, the energy dissipated
by the viscoelasticity during the harvesting, the condition of stress in the rheological model
should also be solved. When subject to mechanical forces in plane and a voltage in thickness,
the DE membrane will be stretched by λ due to the stress arising form the force σforce and the
Maxwell stress σMaxwell. The sum of the external stresses should be balanced by the stresses in
both networks, σA+σB=σMaxwell+σforce, where the stress in spring A equals the stress in the top
network σA, and the stress acting on the dashpot is the same as the stress in spring B, which is
also the stress in the bottom network σB.

Previously, the permittivity of DE is assumed as constant in the majority of cases, which goes
against the molecular physics: molecules in the elastomer will contain more thermodynamic
energy at a higher temperature, resulting in a greater amplitude of random thermal motion.
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Therefore, the molecules are less closely aligned with each other, and the relative permittivity
will decline with the enhancement in temperature. The stretch will change the active range of
the molecules too [32]. Indeed, the recent research has proved that the relative permittivity of
VHB 4910 is affected by the temperature and stretch simultaneously [26], and the specific
expression of εr for VHB 4910 can be depicted in Eq. (1).
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T
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where a is the parameter describing the electrostriction of DE, and b is determined by the
expression Mηd2/(3κε0), where M, ηd and κ represent the dipole current density, the dipole
moment and the Boltzmann constant, respectively. ε0=8.85×10-12 F/m is the permittivity of
vacuum. Parameter c describes the relative permittivity at the reference temperature without
deformation. The parameters obtained from the experimental data of Jean-Mistral [26] will be
selected here: a=-0.0533 F/m, b=645.4224 F.K/m and c=3.1834 F/m.

The dielectric elastomer itself, the mechanical forces, the external voltage and the thermal
force constitute a thermodynamic system, and the free energy density function of this system
can be expressed as follows:
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where the thermo-elastic energy Ws denotes the variation in strain energy from the reference
configuration to the current configuration at a fixed temperature T. The electrostatic energy is
represented by the second item in the right hand side of Eq. (2). The last item reflects the
absolute thermal contribution [18][19], in which the density and the specific heat capacity of
the DE film are described by ρ0 and c0, respectively.

In practice, the VHB elastomer exhibits strain-stiffening effect during the deformation due to
finite configurations of the polymer chains [2][32]. Considering the extension limits, the Gent
model [33] is adopted to characterize the thermo-elastic energy Ws. Combine the rheological
model and the relative permittivity of VHB 4910, the specific function of Ws can be described
in Eq. (3).
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where the shear moduli of the springs meet the relation, μA/μB=3/7 [14] and an instantaneous
modulus of DE is defined as μ(T)=μA+μB=Y(T)/3, where Y(T) stands for the isothermal elastic
modulus in small deformation at temperature T. In this study, a set of material parameters for



VHB 4910 are chosen as: JA=90, JB=30 [34] and Y(T)=0.2001(1000/T)2-1.078(1000/T)+1.518
MPa [35].

According to the equilibrium in thermodynamics, when the DE membrane is in mechanical
and electrical equilibrium, the equations of state can be achieved from: s1=∂W/∂λ1, s2=∂W/∂λ2

and /E W D    [2][16]. The specific equations of state are demonstrated in Eqs. (4)-(6).

2 3 2 2 2
1 1 1 1 2 2

1 2 2 2 2 2 2 2 2
1 1 2 2 1 2 1 2

3 2 2
1 1 2

2 2 2 2 3 2
1 2 1 2 0 1 2 1 2

2

2 2
0 1 2 1 2

( )( )
(1 ( 3) / )

( )( )
(1 ( 3) / ) ( / )

2 ( / )

B

B

A

A

Ts
J

T D
J a b T c

aD
a b T c

     
       

   
       

   

  

   

 

 


 

   


 

     

 





(4)

2 3 2 2 2
2 2 2 1 1 2

2 2 2 2 2 2 2 2 2
1 1 2 2 1 2 1 2

3 2 2
2 2 1

2 2 2 2 2 3
1 2 1 2 0 1 2 1 2

2

2 2
0 1 2 1 2

( )( )
(1 ( 3) / )

( )( )
(1 ( 3) / ) ( / )

2 ( / )

B

B

A

A

Ts
J

T D
J a b T c

aD
a b T c

      
       

   
        

    

  

   

 

 


 

   


 

     

 





(5)

2 2
0 1 2 1 2( / )

DE
a b T c    


 

 (6)

The membrane is subject to a homogeneous, equal-biaxial force P in the following simulation,
so setting s1=s2=s, λ1=λ2=λ and ξ1=ξ2=ξ in the equations of state above. With elimination of the
variable D in either Eq. (4) or (5), the function denoting the nominal stress of the membrane
is illustrated in Eq. (7).
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Based on the expression of the nominal stress, a function F(λ) that characterizes the elasticity
of the elastomer can be obtained in Eq. (8). In the absence of a voltage (E=0), the function
F(λ) corresponds to the nominal stress s=P/LH. In the absence of mechanical loads (s=0), the
membrane of DE will also contract in thickness and expand in area when subject to a voltage.
The deformation induced by electric filed equals that caused by the Maxwell stress, which is
equivalent to the equal-biaxial nominal stress 2 3 2

0(1.5 + / + )a b T c E    . The two items in Eq. (8)
also represent the nominal stresses of the networks, respectively.
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The dashpot in the nonlinear rheological model is regarded as a Newtonian fluid, so the rate
of deformation in the dashpot can be denoted by ξ-1dξ/dt, and the relationship between the
stretch λ and the inelastic stretch ξ can be described in Eq. (9). The dashpot will dissipate the
mechanical energy with a viscoelastic relaxation time τ(T)=η/μB(T) [14], which obviously
depends on temperature. Refer to the experiment data from Sheng et. al [36], the viscoelastic
relaxation time corresponding to four sampling temperatures are illustrated: τ(273K)=87.216
s, τ(293K)=72.377 s, τ(313K)=67.802 s and τ(333K)=65.573 s.
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2.2. Equations of the plane-parallel capacitor

When the two electrodes are connected to an electric power source through a conducting wire,
charges will be activated and transferred from one electrode to another, leading to the electric
potential difference between the surfaces of the DE membrane. Along with the deformation
induced by the equal-biaxial force, the additional charges can be stored and released through
the electric circuit. From an electrical point of view, the DEG can be regarded as a stretchable
plane-parallel capacitor. The membrane of DE functions as a dielectric medium between two
compliant electrodes plates. The governing equation for this capacitor is given by Qp=ΦC,
where C represents the capacitance of the DEG determined by the configuration of the DE
membrane. By definition, the electric displacement is D=Qp/(λL)2, and the electric field is
E=Φ/h. These two variables can be related by D=ε0εrE. A combination of the relations above
is shown in Eq. (10).
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2.3. Equations of the current leakage

As an electrical component, there is no doubt that the generator made of DE will suffer from
unavoidable leakage problem, as shown in Fig. 3. The current leaks through the membrane
ileak can be modeled by a conductor which is in parallel with a capacitor. The amount of the
current which flows through the electrodes ip is obtained by differentiating the magnitude of
the positive and negative charges ±Qp that polarize the membrane with respect to time. The
total amount of the charges which transported through the conducting wire is Q and can be
acquired by Eq. (11).
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Figure 3. Current leakage model of the DE membrane.

A variable describing the density of the leaked current is defined, jleak=ileak/(λL)2. In addition,
the experiment has indicated that the conductivity of the VHB elastomer rises exponentially
with the rising electric field, and the following relation has be fitted, jleak=σ0exp(E/EB)E [37],
where σ0 is the conductivity under the low electric fields, and EB is an empirical constant with
the same dimension as the electric field. The variables σ0=3.32×10-14 S/m, EB=40 MV/m are
chosen for the following analysis [14][38], and ileak can be obtained from Eq.(12).
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3.Mechanisms of energy conversion and failure modes

Different kinds of processes such as constant voltage, constant charge and constant electric
[39]-[41] have been designed as energy conversion cycles. Although each conversion cycle
has its own merits and demerits in the suitability and stability, the mechanism of conversion
cycles can be summarized: the electrical energy is extracted from a four-stroke cycle by the
variability in the capacitance of the DE membrane. To narrow down our research objective,
the Carnot-shape cycle [42][43] that consists of two constant voltage processes and two open
circuit processes is introduced and employed to study the behaviors of the DEG at different
temperatures.

3.1. Basic energy conversion cycle

The Carnot-shape cycle applied to the DEG can be realized via a three-way switch [43][44].
A switch can connect the generator to the input battery that provides the charges at a low
voltage, or connect it to the output battery that stores the charges at a high voltage, or keep it
in an open circuit. The mechanism of an ideal four-stroke cycle is demonstrated in Fig. 4,
where a line describes a process and a contour is a cycle. In the process A→B, as illustrated
in Fig. 4(b), the amount of the charges on the electrodes supplied by the low-voltage battery
increases from Qlow to Qhigh with the continuous stretch of the membrane from λA to λB as
depicted in Fig. 4(a) (the capacitance improves). In the process B→C, with constant charge
(open circuit), the voltage between the electrodes increases when the stretch is partly released
from λB to λC (the capacitance decreases). The release degree is measured by the expression:
ΦlowC(λB)=ΦhighC(λC). In the process C→D, the charges on the electrodes are pumped to the
high-voltage battery due to the further release of the stretch from λC to λD (the amount of the
charges that the DEG can store declines with a smaller capacitance). In the last process, with
charges maintained again (open circuit), the voltage between the electrodes decreases when
the membrane is stretched from λD to the initial stretch λA (the capacitance increases) and the



following relation should be satisfied: ΦlowC(λA)=ΦhighC(λD). After each cycle, external forces
pump a certain amount of charges from the low-voltage battery to the high-voltage one.

(a) force-stretch diagram (b) voltage-charge diagram
Figure 4. The mechanism of an ideal four-stroke cycle.

In the following analysis, the DEG will be operated in the conversion cycle with four courses:
starting with the initial stretch λ0 at state A, the DEG is subject to a low-voltage battery and
an equal-biaxial force stretches the membrane at the same time. The first process ends at state
B, in which the maximum stretch achieves λmax. In the process B→C, the low-voltage battery
disconnects the membrane and the force is partly released to make the membrane thicker. In
the process C→D, a high-voltage battery is applied to the membrane and the force is further
released. The minimum stretch λmin is attained at state D. In the last process, the equal-biaxial
force stretches the membrane to the initial state in the open circuit condition. The complete
energy conversion cycle is sketched in Fig. 5, where the initial state of the DEG is depicted
by the color image, and the dotted line indicates the final state.

Figure 5. The DEG operates in different processes of the conversion cycle.

The previous study has proved theoretically that the pre-stretch can produce a larger nominal
electric field and improve the stability of the elastomer [45]. Thus, the DEG is pre-stretched
before activation. Because of viscoelasticity, the mechanical behavior of the DE membrane is
affected by the viscoelastic relaxation time. Considering that the relaxation time reaches its
maximum 87.216 s at 273 K, so the period of the cycle should be set above this value to give
the membrane enough time to fully relax. Here, the period is set as tcycle=90 s. By determining
the initial and maximum stretches (λ0=4 and λmax=6), the stretch at state C (λC=4.8), and the
low-level voltage Φlow=1.8 kV, the minimum stretch and the high-level voltage are calculated
by expressions ΦlowC(λmax)=ΦhighC(λC) and ΦlowC(λ0)=ΦhighC(λmin). However, the capacitance



of the DEG will be altered by temperature, resulting in various results, as can be seen in Tab.
1. For simplicity, the average values are employed and the periods of different courses can be
obtained at a constant stretch rate |dλ/dt|=2×(λmax-λmin)/tcycle (tAB=33 s, tBC=20 s, tCD=25 s and
tDA=12 s). The stretch applied to the DEG is demonstrated in Fig. 6a, and the nominal electric
field solved from Eq. (10) is fitted under different temperature situations and illustrated in Fig.
6b (the curve is assumed to be continuous and independent of temperature).

Table 1. The minimum stretch and high-level voltage calculated at different temperatures.

Temperature 273 K 293 K 313 K 333 K
λmin 3.2954 3.3002 3.3048 3.3091

Φhigh (kV) 3.6918 3.6645 3.6389 3.6149
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Figure 6. Cyclic loadings for the conversion. (a) The stretch; (b) The nominal electric field;

3.2. Mechanisms of failure modes and verification

As mentioned before, the behavior of the DE membrane is badly restricted by failure modes.
Therefore, the cyclic loadings applied in Fig. 6 must locate in the allowable area to ensure the
normal function of the DEG [43][44]. In this section, the mechanisms of the common failures
are described and the feasibility of the cyclic loadings applied is validated.

3.2.1. Material rupture

The deformation of the DE membrane is finite because of the extension limits of the polymer.
When polymer chains are seriously pulled, the chains approach the limit of configuration and
the rupture may cause the failure of the generator. The critical stretch of the DEG may also be
restricted by the stretch limit of the electrodes. However, more compliant electrodes are used
in this work, letting the critical stretch of the generator be the stretch limit of DE. The critical
condition for rupture is λ=λR, and the previous research has suggested that the critical stretch
of VHB 4910 under equal-biaxial stretch is λR=6 [46].

3.2.2. Loss of tension
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It is vital to maintain the membrane of DE in tension, as wrinkles can be caused easily by any
compressive stress in plane, which may affect the normal operation of the DEG. The critical
condition for LT is s=0 (P=0), and can be figured out by vanishing the nominal stress in Eq.
(7), as illustrated in Eq. (13). Substitute the applied time-dependent stretch into Eq. (13), the
boundaries of LT corresponding to different sampling temperatures can be plotted in Fig. 7.
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Figure 7. The critical condition for LT at different temperatures.

It is found that the boundary of LT will decline with a higher temperature and gradually reach
a steady state after several cycles due to viscoelasticity. In this simulation, the lowest critical
value for this failure mode is 3.79×106 V/m at T=333K, which is still larger than the highest
nominal electric field applied. As a result, no failure of LT will take place.

3.2.3. Electrical breakdown

When the membrane is connected to a voltage source, electrical breakdown may happen with
the increasing electric field, making the device fail. The electrical breakdown field is always
assumed as constant in the previous studies [42][43], but the latter experiments on the VHB
elastomer have indicated that the critical value of electrical breakdown EEB depends on the
stretch of DE [47][48], and the experimental data can be fitted in Eq. (14).

2 2( ) (1) R
EB EB EBE E E     (14)

where EEB(1) is the electrical breakdown field of the membrane of DE in the reference state,
and the exponent coefficient R represents the sensitivity of the electrical breakdown field
toward the stretch. Parameters for the VHB elastomer with the thickness H=1.0mm are fitted
as EEB(1)=30.6 MV/m and R=1.13 [20]. Substitute the time-dependent stretch into Eq. (14), it
can be easily observed that the smallest critical value for EB 6.44×106 V/m is larger than the
maximum of the applied nominal electric field, leading to no EB during the harvesting.

3.2.4. Electromechanical instability



Exposure to a voltage, the membrane of DE will compress its thickness, resulting in a higher
true electric field. The positive feedback between the true electric field and the thickness may
make the membrane thin down sharply, leading to EMI. The boundary of this failure can be
defined as: when the mechanical forces are fixed, the voltage becomes a function of stretch.
The peak of Φ(λ) corresponds to the critical condition for EMI. Differentiate Eq. (7) with
respect to stretch, and the boundaries of EMI can be derived as:
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Figure 8. The critical condition for EMI at different temperatures.

Similar to the failure of LT, the boundary of EMI also depends on temperature and a higher
temperature lowers the boundary of EMI. According to the numerical results, the minimum
critical value for EMI is 5.12×106 V/m, which is larger than the highest nominal electric field
applied. In summary, for the generator made of VHB 4910, the cyclic loadings applied will
not lead to any failures within the temperature range 273K~333K.

4. Temperature effects on the performance of the DEG

Due to obvious viscoelastic relaxation, polymer chains in the membrane of DE will not attain
stable configurations instantly. Therefore, it will take the DEG some time to possess steady
mechanical parameters such as inelastic stretch and nominal stress. According to Eq. (9), the
inelastic stretch can be obtained once the time-dependent stretch is determined. The inelastic
stretches at different sampling temperatures are plotted in Fig. 9. It is observed that a higher
temperature gives rise to a larger inelastic stretch, and the inelastic stretch will reach the peak
value behind stage B in which the peak stretch achieves in every single cycle. Furthermore,
the largest inelastic stretch will never exceed λmax, and the curves will attain steady-state after
the first five cycles in this study.
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Figure 9. The inelastic stretch as a function of time at different temperatures.

Substitute the time-dependent stretch and inelastic stretch into Eq. (7), the nominal stress as a
function of time can be depicted at different temperatures in Fig. 10. The curves show that the
membrane of DE necessitates a larger equal-biaxial force at a lower temperature to satisfy the
required operating condition. This phenomenon can be explained by the smaller modulus of
DE induced by the higher temperature. Similarly, the nominal stress will attain steady-state
after the first five cycles.
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Figure 10. The nominal stress as a function of time at different temperatures.

The amount of the charges on the electrodes ±Qp can be calculated from Eq. (10) and the
temperature will affect the charges via the permittivity of DE, the factor b/T. The amounts of
the charges on the electrodes and the leaked charges at different temperatures are illustrated
in Fig. 11. It can be found from the curves that a higher temperature corresponds to a lower
level of Qp due to the negative effect of the temperature on the permittivity, and the amounts
of the charges in process B→C and D→A are almost constant for the open circuit conditions.
The amount of the leaked charges will increase after every single cycle due to the periodicity
of the applied loads. The total amount of the charges through the conducting wire is obtained
by the addition of Qp and Qleak, and will exhibit an increasing tendency as well.

Differentiate the charge-related parameters in Fig. 11 with respect to time, the magnitudes of
currents can be solved with temperature variation. Similar to the tendencies of the charges, a
higher temperature will make the magnitude of the current through the electrodes decline.
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Figure 11. The amount of the charges on the electrodes as a function of time at different
temperatures as well as the leaked charges.

For an ideal DEG, the energy input includes the mechanical work done by the equal-biaxial
force and the electrical energy provided by the low-voltage battery, and the energy output is
measured by the electrical energy pumped to the high-voltage battery. However, during the
conversion, some parts of the energy will be lost, including the mechanical energy dissipated
by the inelastic stretch and the electrical energy lost by the leaked current. The mathematical
expressions of different kinds of energies are described as follows:

The mechanical work done per cycle depends on the stretch of the membrane λ and the
magnitude of the equal-biaxial force P, which will attain steady-state after several cycles, as
shown in Fig. 10. The total mechanical energy in a single cycle can be calculated by 2∫Pd(λL).
Since no specific dimensions of the original configuration is defined in this study, it is of
great convenience to adopt the energy density to characterize the amplitude of energy. Thus,
the mechanical energy density can be presented in Eq. (16).

=2 ( / )dmechw P LH  (16)

The membrane of DE will dissipate the mechanical energy partially through the work done
by the dashpot during the deformation. As mentioned before, the stress acting on the dashpot
equals the stress in spring B, and the nominal stress of the dashpot is presented by sB=σB/ξ.
Similarly, the energy density of viscous loss wvisc is given in Eq. (17). Moreover, the electrical
energy dissipated by the current leakage which relies on the magnitude of voltage Φ and the
amount of charges that leak through the electrodes Qleak is described in Eq. (18).

=2 dB
viscw s  (17)

2= ( / ) d( / )leak leakw H Q L (18)

Based on the condition of energy flow, the mechanical work done by the equal-biaxial force
makes up the absolute input part, the energy dissipated by the inelastic stretch and the leaked
current constitutes the loss part, and the difference between the electrical energy pumped to
the high-voltage battery and the energy absorbed from the low-voltage battery stands for the
absolute output part.



The mechano-electrical conversion efficiency described by α can be obtained from Eq. (19).
It is obvious that the efficiency of the DEG operates at α=1 without any losses. If the amount
of the energy lost is more than the mechanical energy, the generator will operate at a negative
efficiency with no energy generated.

=1 ( + )/visc leak mechw w w  (19)

Meanwhile, the electrical energy that contains the electrical energy generated and the energy
lost by the leaked current is also figured out to examine the correctness of the energies above.
This electrical energy can be calculated from Eq. (20).

2= ( / ) d( / )pele pw H Q L  (20)

The relevant variables are taken from the seventh cycle (steady-state) in the response curves
in Figs. 9-11 to calculate the integrals above. Specifically, the mechanical energy density is
integrated over the cycle on the force (P/LH)-length (λ) diagram, as shown in Fig. 12a. The
density of the viscous loss is integrated over the cycle on the force (sB)-length (ξ) diagram, as
shown in Fig. 12b. The density of the electrical energy containing the electrical loss and the
generated part is integrated over the cycle on the voltage (Φ/H)-charge (Qp/L2) diagram, as
shown in Fig. 12c. The density of the electrical loss is integrated over any single cycle of the
voltage (Φ/H)-charge (Qleak/L2) diagram, as shown in Fig. 12d.
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Figure 12. The curves characterize the energies of different kinds. (a) The mechanical energy
produced by the force; (b) The energy dissipated by viscoelasticity; (c) The electrical energy

involving the electrical loss and the generated part ; (d) The energy loss due to current leakage;



The values of these energy densities at different sampling temperatures are outlined in the
following table. The second column of Tab. 2 indicates that the mechanical energy decreases
with a higher temperature, and the temperature tends to have less influence on the mechanical
energy (the difference of wmech is 9800 J/m3 from 273 K to 293 K and 7000 J/m3 from 313 K
to 333 K). The third column also shows that the DEG dissipates less mechanical energy at a
higher temperature. Due to the direct control on the stretch in this study, the electrical energy
lost by current leakage is independent of temperature. The conversion efficiency is listed in
the fifth column and it is found that a higher conversion efficiency can be realized if the DEG
is operated at a low temperature. The reason is that the reduction in temperature gives rise to
relatively more mechanical energy than the viscous loss. However, the temperature effect on
the efficiency will get smaller when the temperature keeps rising. The electrical energy which
has the same trend as the mechanical energy is also listed in the last column. Furthermore, it
is observed that the mechanical energy wmech almost equals the sum of the viscous loss wvisc
and the electrical energy wpele involving the electrical loss wleak and the absolute output part,
satisfying the conservation of energy.

Table 2. Energy densities and conversion efficiency at different temperatures.

T (K) wmech (J/m3) wvisc (J/m3) wleak (J/m3) α wpele (J/m3)
273 1.287e+05 2.598e+04 4.842e+04 42.19% 1.027e+05
293 1.189e+05 2.052e+04 4.842e+04 42.01% 9.835e+04
313 1.095e+05 1.521e+04 4.842e+04 41.89% 9.427e+04
333 1.025e+05 1.124e+04 4.842e+04 41.78% 9.124e+04

6. Conclusions

In this study, with combination of the temperature-dependent permittivity and shear modulus
and major dissipation processes including viscoelasticity and current leakage, an integrated
model focusing on the influences of temperature on the performance of DEGs is established.
On the basis of a specific energy conversion cycle, the performance parameters including the
energy density and conversion efficiency can be all figured out at various temperatures. It is
noticed that the DEG operates more efficiently at a lower temperature owing to the relatively
more enhancement in the input mechanical energy than the viscous loss. In the meantime, the
failure modes are considered at different temperatures to ensure the normal operation of the
device. It is observed that the generator is more likely to suffer from LT and EMI at a higher
temperature. The simulation in this study may offer great help and guideline in the design and
optimization of energy harvesting with different temperature conditions, which can contribute
to a more efficient dissipative DEG.
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