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Abstract 

In this paper, a stabilized edge-based smoothed finite element method (ES-FEM) is proposed 

to solve incompressible fluid flow problems. To stabilize the convection caused oscillation, 

characteristic-based method is employed. To stabilize the pressure caused oscillation, the 

polynomial pressure projection (P3) is used. The proposed stabilization is denoted as CBP3 

scheme. One excellent merit of CBP3 scheme stabilization is that it suits for all types of 

element, even for the simplest 3-node triangular element. The CBP3 scheme implemented 

into ES-FEM with T3 element is denoted as CBP3/ES-FEM-T3. To verify proposed CBP3 

scheme and check its stability, the benchmark, Taylor-Green vortex, is calculated. As a 

comparison, this benchmark is also calculated by CBP3/FEM-T3. From the solutions of 

CBP3/FEM-T3 and CBP3/ES-FEM-T3, CBP3 scheme is proved with ability to stabilize FEM 

and ES-FEM. The convergence studies carried out reveal that CBP3/ES-FEM-T3 beats 

CBP3/FEM-T3 on accuracies of both velocity and pressure.  

Keywords: ES-FEM, Chracteristic-based method, Polynomial pressure projection, Triangular 

element, Incompressible laminar flow 

Introduction 

In solid mechanics, the edge-based smoothed finite element method (ES-FEM) has been 

proven by vast literature [1–5] with much better accuracy and convergence than FEM when 

using T3 element. Due to the gradient smoothing using edge-based smoothing domain, the 

strain distribution of ES-FEM in T3 mesh of whole system is smoother than FEM. Therefore, 

ES-FEM can soft the stiff behavior of T3 element to achieve better solution. Since T3 element 

can discretize complex geometry by well-developed unstructure mesh generators, one 

technique which can improve standard FEM T3 element, such as ES-FEM, will be welcomed 

by engineers. 

As a result, it is also attractive to exploit the benefits of ES-FEM in fluid dynamics. The 

motivation of this paper is to extend ES-FEM using T3 element to solve laminar flow. But 

unlike the solid governing equation which is self-adjoint Laplace type equation, the Navier-

Stokes equations are non self-adjoint. This non self-adjoint feature is derived from the 

nonlinear convection of fluid flow. Previous investigations about standard Galerkin weighted 



residual method, such as FEM, for Navier-Stokes equations [6] have shown the spatial 

oscillation. The ES-FEM also has to face this convection caused oscillation. On the other 

hand, ES-FEM should also equip with suitable stabilization for pressure oscillation in 

incompressible flow. The reason why first calculates incompressible laminar flow using ES-

FEM is that compressible flow is quite complicate in physics, such as shock waves and high 

Reynolds number. Usually, incompressible constraint is circumvented by selective S-FEM in 

solid mechanics. This time, the selective S-FEM approach is not applicable due to the fully 

incompressibility shown in fluid material behavior. Previous study made by the authors using 

selective reduced integration of 4-node quadrilateral elements has demonstrated bulk viscosity 

(analogous to bulk modulus in solid mechanics) must reach to 10e8 times of shear dynamic 

viscosity to obtain satisfied results. But selective S-FEM shown very violent oscillation in 

pressure under that high penalty factor.  

Therefore, good convection and pressure stabilizations are the prerequisites for successfully 

using ES-FEM to solve fluid flows. Besides, the potential stabilizations must be friendly to T3 

element. We do can successfully solve fluid flows by using higher order elements with easy-

to-create unstructured mesh. However, higher order elements, such as 6-node triangular 

element, consume much more computation resources than T3 elements. Another 

consideration is that people will not have the impetus to add gradient smoothing to the quite 

accurate higher order elements. In this paper, we chose widely used characteristic-based 

method proposed by Zienkiewicz [7] as convection stabilization. On the pressure stabilization, 

the polynomial pressure projection proposed (P3) by Dohrmann and Bochev [8] is deployed. 

This P3 pressure stabilization has been demonstrated appropriate for any element type for any 

level of incompressiblity, including simplest T3 element. In its previous cooperation with S-

FEMs for solid mechanics and Stokes flow, P3 stabilization can further soft the behaviors of 

FEM and S-FEM. Especially, ES-FEM with P3 stabilization outperformed FEM and other S-

FEMs for incompressible solid problems using T3 element. Combine aforementioned two 

stabilizations, we proposed a new stabilization scheme named as Characteristic-based 

Polynomial Pressure Projection (CBP3). With this CBP3 scheme, FEM and ES-FEM should 

able to solve incompressible laminar flow. 

The rest of the paper is structured as following. The second section introduces the governing 

equations of incompressible laminar flow. The third section is the brief derivations of CBP3 

scheme. The following section describes the merge of CBP3 into ES-FEM. The forth section 

is the case studies to access the accuracy of proposed methods. In the last section, conclusions 

are drawn. 

Governing equations 

If flow is incompressible without heat transfer, the dimensional conservative N-S equations 

can be simplified to: 
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In which, p  is the fluid pressure, iv  is the i-th component of fluid velocity,   is the fluid 

density which is a constant in incompressible flow, ig  is the gravity acceleration, and ij  is the 

deviatoric stresses in the fluid: 
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where,   is the fluid dynamic (shear) viscosity and ij  is the Kronecker delta. 

The boundary conditions of N-S equations are the Velocity Boundary Condition (VBC), the 

Pressure Boundary Condition (PBC) and Traction Boundary Condition (TBC) as below. 

Meanwhile, the Initial Condition (IC) is also presented below. 
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where 
v t     and 0v t   . 

Characteristic-based polynomial pressure projection scheme 

Characteristic-based stabilization 

When using Galerkin weighted residual numerical methods, like FEM, for N-S equation, the 

nonlinear non-self-adjoint convection term will cause the numerical oscillation. Since ES-

FEM is also based on Galerkin weighted residual method, the characteristic-based 

stabilization is applied in this paper to cure the convection instability.  

In this study, we select the Characteristic-based stabilization which leads to a Characteristic-

Galerkin (CG) scheme. This method has a very solid mathematical background which will be 

demonstrated on one-dimensional scalar convection-diffusion equation, 
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where    is a scalar quantity being transported by the velocity U  , and k   is the diffusion 

coefficient. 

If we change above equation into a new coordinate system 'x  which is defined as 

 'dx dx Udt    (5) 

Because a physical quantity must not vary if we change our coordinate system, we can get 

 ( , ) ( ', )x t x t    (6) 

Then, we can get following relation 
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Substitute above relation into Eq.(1.6), we can simplify it at new coordinate system as 
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In above equation, it has no convective term any more in this new coordinate system. 

Furthermore, the equation becomes self-adjoint.  

 
Figure 1. The simple explicit characteristic-Galerkin procedure [9]. 

We should also pay attention to the new coordinate system on characteristic direction is 

updated at every time step. The meaning of updating coordinate system is our Euler fluid 

mesh must moves like a Lagrangian solid mesh. However, this mesh updating is time 

consuming and will distort mesh. Thus, a simple explicit characteristic-Galerkin procedure 

was first proposed in 1984 [10] by using the local Taylor expansion on characteristic 

directions as Figure 1. The detail derivation of this explicit characteristic-Galerkin procedure 

can be found in reference [6]. We simply write down its final form with Euler time integration, 
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Its extension to multi-dimensional can be straightforwardly written as 
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Similar procedures can be conducted for incompressible N-S equations as Eq.(1). Here, we 

only present the final form of explicit characteristic-Galerkin scheme for N-S equations with 

Euler time integration. 
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If calculate the diffusive terms at n+1 time step  to the left side of  equation, we can achieve 

the quasi-implicit characteristic-Galerkin scheme as below 
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Due to only diffusive terms are calculated implicitly, this scheme is denoted as quasi-implicit 

scheme. 

Characteristic-Galerkin semi-discretized form 

Interpolate the velocity and pressure using shape function  , 
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where nN   is total number of nodes in the model, ( )I x  is the shape function of node I, 

( )i Iv x  is the velocity of node I. 

Combine time discretized momentum equation Eq.(12)  with the continuity equation in Eq.(1), 

the semi-discretized weak form is directly provided as below 
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where 
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In above equation, 
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Although Eq.(14) is standard weak form for quasi-implicit characteristic-Galerkin scheme, its 

lower diagonal term of left side matrix is zero which doesn’t circumvent the LBB restriction 

for incompressibility. Hence, directly using Eq.(14) will cause pressure locking or instability. 

Polynomial pressure projection 

Previous widely used technique to satisfy LBB condition is the Taylor-Hood element [11], 

using higher order element for velocity and one order lower element for pressure. However, 

Taylor-Hood elements introduced much more degree of freedoms than equal-order elements 

for both velocity and pressure. Another widely used approach is the selective reduced 

integration. This approach has limitation on the element type, usually not applicable for 

simplest linear triangles and tetrahedrons. 

A relatively new pressure stabilization, so called polynomial pressure projection (P3), has 

been proposed by Dohrmann and Bochev [8]. This very potential technique has been 

demonstrated its capability to circumvent LBB restriction in incompressible Stokes equation 

using equal-order shape function for velocity and pressure.  

The details of derivation of P3 stabilization can be found in reference [8] and [12]. The 

implementation of P3 stabilization is adding a stabilization term in weak form Eq.(14) as 

following 
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where IJV  is the P3 stabilization term. This term IJV  is calculated on each element as below 
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where Ih  is the one order lower polynomial interpolation than shape function I ,   is the 

parameter of P3 stabilization. In the 3-node triangular element which is used in this paper, the 

pressure projection for an element is just the average pressure as below 
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where p  is the pressure projection, ip  is the pressure of i-th node.  

Correspondingly, the P3 stabilization term IJV  for 3-node triangular element is given as below 
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Now, back to Eq.(17), its left side system matrix is positive definite leading to solution for 

any interpolation of velocity and pressure fields. Since the projected pressure is k-1 order 

lower than velocity of k order, the mixed patch condition is also satisfied. 

Edge-based smoothed finite element method with CBP3 scheme 
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Figure 2. The edge-based gradient smoothing domain for T3 element. 

Since ES-FEM for T3 element is highly recommended in solid mechanics, the ES-FEM is 

first implemented with CBP3 scheme. The gradient smoothing is the fundament of ES-FEM 

and other S-FEMs. In FEM, the field variables’ gradients are calculated by  
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In S-FEM, the gradients of field variables are calculated same with FEM but using smoothed 

derivatives of shape function 
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The final equation of the smoothed derivatives of shape function is written as below, more 

detailed derivation can be found in reference [1] 
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where iJ E  means the J-th edge of smoothing domain i , JL  is the length of J-th edge, iA  

is the area of smoothing domain.  

 



In this paper, the edge-based smoothing domain is used. Its construction is illustrated in 

Figure 2. The edge-based smoothing domain crosses two connecting T3 element which 

makes the smoothed derivatives of shape function is more smooth than standard derivatives of 

shape function in whole system. As a result, the ES-FEM, respects to edge-based smoothing 

domain, for T3 element show softer behavior than FEM using T3 element.  

The smoothed weak form of ES-FEM with CBP3 scheme using T3 element (CBP3/ES-FEM-

T3) can be written as 
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where   means smoothed matrices calculated by ES-FEM 
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where ESDN  is the number of edge-based smoothing domains, l  is the l-th smoothing 

domain. Above terms’ quadrature are approximated using one point area integration at the 

center of smoothing domain.  

Numerical example 

Taylor-Green vortex 

The Taylor-Green vortex problem is a benchmark with following analytical solution [13], 
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The analytical solution of Taylor-Green vortex problem is a unsteady solution which is desire 

to verify the CBP3 scheme. 
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Figure 3. The edge-based gradient smoothing domain for T3 element. 

The fluid domain for Taylor-Green vortex is a square with L 2 m  , plotted in Figure 3(a). 

A set of uniform meshes, with characteristic element length h=0.4 m, h=0.3 m, h=0.2 m and 

h=0.1 m, is used to test the convergence of CBP3/FEM-T3 and CBP3/ES-FEM-T3. In (b), the 

mesh with h=0.1m is plotted. The total computation time is t=3s, the time step length is 0.1s 

for both methods. The fluid density is is 1 kg/m
3
, the fluid dynamic viscosity   is 0.1 

kg/(m∙s). The stabilization parameter 1  , according to reference [8]. The initial conditions 

and boundary conditions are prescribed as the analytical solution in Eq.(26). 

 

In Figure 4, the vx contours of Taylor-Green vortex problem calculated by CBP3/FEM-T3 

and CBP3/ES-FEM-T3 are presented. Two proposed methods give almost identical vx 

contours without visible oscillation. The same situation is happened for the pressure contours , 

see 
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Figure 5. 



  

(a) (b) 

Figure 4. The contours of vx for CBP3/FEM-T3 (a) and CBP3/ES-FEM-T3 (b). 
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Figure 5. The contours of p for CBP3/FEM-T3 (a) and CBP3/ES-FEM-T3 (b). 

As a further investigation, the absolute errors of vx  (
analytical

x xv v  ) on all node are calculated 

and plotted as contours in  
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Figure 6.  CBP3/ES-FEM-T3 exhibits slightly better results at areas near the line y=3m. 

Likewise, the absolute nodal pressure errors are also plotted as contours in 
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Figure 7. The errors distributed in problem domain share resemblance for CBP3/FEM-T3 and 

CBP3/ES-FEM-T3. But it is obvious that CBP3/ES-FEM-T3 has a better pressure accuracy. 
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Figure 6. The contours of absolute error of vx for CBP3/FEM-T3 (a) and CBP3/ES-

FEM-T3 (b). 
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Figure 7. The contours of absolute error of p for CBP3/FEM-T3 (a) and CBP3/ES-FEM-

T3 (b). 



  

(a) (b) 

Figure 8. The spatial convergence of vx (a) and p (b) for CBP3/FEM-T3  and CBP3/ES-

FEM-T3 ( 0.1t s  , 1  ). 

The spatial convergence studies of CBP3/FEM-T3  and CBP3/ES-FEM-T3 are conducted on 

vx and p. The L2 norms of errors of vx and p are used as accuracy indicator. The convergence 

curves are obtained on meshes with characteristic element length h=0.4 m, h=0.3 m, h=0.2 m 

and h=0.1 m. In Figure 8, convergence curves of vx and p are drawn. With the contribution of 

edge-based gradient smoothing, CBP3/ES-FEM-T3 has both better accuracies on velocity and 

pressure. It is consistent with the absolute errors distributions of CBP3/FEM-T3 and 

CBP3/ES-FEM-T3 in Figure 6 and Figure 7. 

The temporal  convergence is also studied. Here, four time steps, 0.1st  , 0.05st  , 

0.025st  , 0.0125st   and 0.00625st  , are selected for CBP3/FEM-T3 and CBP3/ES-

FEM-T3 using mesh with 1024 nodes and h=0.2m. The calculated L2 norms of errors of vx 

and p are plotted in Figure 9. In all different time step circumstances, CBP3/ES-FEM-T3 is 

superior than CBP3/FEM-T3.  

  

(a) (b) 

Figure 9. The temporal convergence of vx (a) and p (b) for CBP3/FEM-T3  and 

CBP3/ES-FEM-T3 (1024 nodes, 1  ). 

 



Conclusions 

A new CBP3 stabilization scheme is developed in this paper. This CBP3 has also been 

implement into FEM and ES-FEM using T3 element. The convection oscillations of FEM and  

S-FEM are reduced by characteristic-based method. The pressure calculation in CBP3 for 

incompressible flow is no longer by solving the pressure Poisson equation of previous CBS 

algorithm. The CBP3 calculates pressure by polynomial pressure projection method whose 

equation only relates to shape function. The numerical example, Taylor-Green vortex, are 

employed here as a verification. Despite that the Reynolds number is only 10, the numerical 

example still demonstrated proposed CBP3 scheme is able to help FEM-T3 to solve 

incompressible laminar flows. Besides, with this proper stabilization, ES-FEM-T3 is proved 

its capability for computational fluid dynamics. Meanwhile, the edge-based gradient 

smoothing can boost the ES-FEM-T3 with better accuracy than FEM-T3. From this very 

primitive study, ES-FEM-T3 can be concluded as a better choice for incompressible flow 

simulation using unstructured T3 mesh. 
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